91 research outputs found
High-Precision Branching Ratio Measurement for the Superallowed + Emitter 74Rb
A high-precision branching-ratio measurement for the superallowed β
+ decay of 74Rb was performed at the
TRIUMF Isotope Separator and Accelerator (ISAC) radioactive ion-beam facility. The scintillating electronpositron
tagging array (SCEPTAR), composed of 10 thin plastic scintillators, was used to detect the emitted β
particles; the 8π spectrometer, an array of 20 Compton-suppressed HPGe detectors, was used for detecting γ rays
that were emitted following Gamow-Teller and nonanalog Fermi β
+ decays of 74Rb; and the Pentagonal Array
of Conversion Electron Spectrometers (PACES), an array of 5 Si(Li) detectors, was employed for measuring
β-delayed conversion electrons. Twenty-three excited states were identified in 74Kr following 8.241(4) × 108
detected 74Rb β decays. A total of 58 γ -ray and electron transitions were placed in the decay scheme, allowing
the superallowed branching ratio to be determined as B0 = 99.545(31)%. Combined with previous half-life and
Q-value measurements, the superallowed branching ratio measured in this work leads to a superallowed f t value
of 3082.8(65) s. Comparisons between this superallowed f t value and the world-average-corrected Ft value, as
well as the nonanalog Fermi branching ratios determined in this work, provide guidance for theoretical models
of the isospin-symmetry-breaking corrections in this mass region.IS
User guide to the toolbox for working with root, tuber and banana seed systems. RTB User guide
This user guide to the Toolbox for working with root, tuber and banana seed systems introduces tools to diagnose, evaluate, and improve seed systems of banana, cassava, potato, sweetpotato, and yam. As a whole, these crops are called roots, tubers and bananas, and they are crucial for food security and income generation, especially in developing countries. All of these crops are reproduced vegetatively, from roots, tubers, stems, suckers or vines. This bulky planting material is expensive to transport. Vegetative seed is perishable and (except for potatoes, yams and a few other exceptions) must be planted as fresh as possible, and it is more likely to carry pests and diseases than true seed. Besides these unique challenges, improved seed systems of root, tuber and banana crops give farmers the opportunity to boost their livelihoods by accessing better quality planting material from landraces or improved varieties that are high yielding, resistant to stresses, more nutritious or more responsive to consumer demand
Epigenome-wide association of PTSD from heterogeneous cohorts with a common multi-site analysis pipeline
Compelling evidence suggests that epigenetic mechanisms such as DNA methylation play a role in stress regulation and in the etiologic basis of stress related disorders such as Post traumatic Stress Disorder (PTSD). Here we describe the purpose and methods of an international consortium that was developed to study the role of epigenetics in PTSD. Inspired by the approach used in the Psychiatric Genomics Consortium, we brought together investigators representing seven cohorts with a collective sample size of N = 1147 that included detailed information on trauma exposure, PTSD symptoms, and genome-wide DNA methylation data. The objective of this consortium is to increase the analytical sample size by pooling data and combining expertise so that DNA methylation patterns associated with PTSD can be identified. Several quality control and analytical pipelines were evaluated for their control of genomic inflation and technical artifacts with a joint analysis procedure established to derive comparable data over the cohorts for meta-analysis. We propose methods to deal with ancestry population stratification and type I error inflation and discuss the advantages and disadvantages of applying robust error estimates. To evaluate our pipeline, we report results from an epigenome-wide association study (EWAS) of age, which is a well-characterized phenotype with known epigenetic associations. Overall, while EWAS are highly complex and subject to similar challenges as genome-wide association studies (GWAS), we demonstrate that an epigenetic meta-analysis with a relatively modest sample size can be well-powered to identify epigenetic associations. Our pipeline can be used as a framework for consortium efforts for EWAS
Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia and sex differences in heritability
The Psychiatric Genomics Consortium-Posttraumatic Stress Disorder group (PGC-PTSD) combined genome-wide case-control molecular genetic data across 11 multiethnic studies to quantify PTSD heritability, to examine potential shared genetic risk with schizophrenia, bipolar disorder, and major depressive disorder and to identify risk loci for PTSD. Examining 20 730 individuals, we report a molecular genetics-based heritability estimate (h 2 SNP) for European-American females of 29% that is similar to h 2 SNP for schizophrenia and is substantially higher than h 2 SNP in European-American males (estimate not distinguishable from zero). We found strong evidence of overlapping genetic risk between PTSD and schizophrenia along with more modest evidence of overlap with bipolar and major depressive disorder. No single-nucleotide polymorphisms (SNPs) exceeded genome-wide significance in the transethnic (overall) meta-analysis and we do not replicate previously reported associations. Still, SNP-level summary statistics made available here afford the best-available molecular genetic index of PTSD - for both European- and African-American individuals - and can be used in polygenic risk prediction and genetic correlation studies of diverse phenotypes. Publication of summary statistics for 1/410 000 African Americans contributes to the broader goal of increased ancestral diversity in genomic data resources. In sum, the results demonstrate genetic influences on the development of PTSD, identify shared genetic risk between PTSD and other psychiatric disorders and highlight the importance of multiethnic/racial samples. As has been the case with schizophrenia and other complex genetic disorders, larger sample sizes are needed to identify specific risk loci
A putative causal relationship between genetically determined female body shape and posttraumatic stress disorder
Background: The nature and underlying mechanisms of the observed increased vulnerability to posttraumatic stress disorder (PTSD) in women are unclear. Methods: We investigated the genetic overlap of PTSD with anthropometric traits and reproductive behaviors and functions in women. The analysis was conducted using female-specific summary statistics from large genome-wide association studies (GWAS) and a cohort of 3577 European American women (966 PTSD cases and 2611 trauma-exposed controls). We applied a high-resolution polygenic score approach and Mendelian randomization analysis to investigate genetic correlations and causal relationships. Results: We observed an inverse association of PTSD with genetically determined anthropometric traits related to body shape, independent of body mass index (BMI). The top association was related to BMI-adjusted waist circumference (WCadj; R = -0.079, P < 0.001, Q = 0.011). We estimated a relative decrease of 64.6% (95% confidence interval = 27.5-82.7) in the risk of PTSD per 1-SD increase in WCadj. MR-Egger regression intercept analysis showed no evidence of pleiotropic effects in this association (Ppleiotropy = 0.979). We also observed associations of genetically determined WCadj with age at first sexual intercourse and number of sexual partners (P = 0.013 and P < 0.001, respectively). Conclusions: There is a putative causal relationship between genetically determined female body shape and PTSD, which could be mediated by evolutionary mechanisms involved in human sexual behaviors
Testing microscopically derived descriptions of nuclear collectivity : Coulomb excitation of 22Mg
Many-body nuclear theory utilizing microscopic or chiral potentials has developed to the point that collectivity might be studied within a microscopic or ab initio framework without the use of effective charges; for example with the proper evolution of the E2 operator, or alternatively, through the use of an appropriate and manageable subset of particle–hole excitations. We present a precise determination of E2 strength in 22Mg and its mirror 22Ne by Coulomb excitation, allowing for rigorous comparisons with theory. No-core symplectic shell-model calculations were performed and agree with the new B(E2) values while in-medium similarity-renormalization-group calculations consistently underpredict the absolute strength, with the missing strength found to have both isoscalar and isovector components. The discrepancy between two microscopic models demonstrates the sensitivity of E2 strength to the choice of many-body approximation employed
Reorientation-effect measurement of the first 2+ state in 12C : Confirmation of oblate deformation
A Coulomb-excitation reorientation-effect measurement using the TIGRESS γ−ray spectrometer at the TRIUMF/ISAC II facility has permitted the determination of the 〈21 +‖E2ˆ‖21 +〉 diagonal matrix element in 12C from particle−γ coincidence data and state-of-the-art no-core shell model calculations of the nuclear polarizability. The nuclear polarizability for the ground and first-excited (21 +) states in 12C have been calculated using chiral NN N4LO500 and NN+3NF350 interactions, which show convergence and agreement with photo-absorption cross-section data. Predictions show a change in the nuclear polarizability with a substantial increase between the ground state and first excited 21 + state at 4.439 MeV. The polarizability of the 21 + state is introduced into the current and previous Coulomb-excitation reorientation-effect analyses of 12C. Spectroscopic quadrupole moments of QS(21 +)=+0.053(44) eb and QS(21 +)=+0.08(3) eb are determined, respectively, yielding a weighted average of QS(21 +)=+0.071(25) eb, in agreement with recent ab initio calculations. The present measurement confirms that the 21 + state of 12C is oblate and emphasizes the important role played by the nuclear polarizability in Coulomb-excitation studies of light nuclei
Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine
Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine
Epigenome-wide meta-analysis of PTSD across 10 military and civilian cohorts identifies methylation changes in AHRR
Epigenetic differences may help to distinguish between PTSD cases and trauma-exposed controls. Here, we describe the results of the largest DNA methylation meta-analysis of PTSD to date. Ten cohorts, military and civilian, contribute blood-derived DNA methylation data from 1,896 PTSD cases and trauma-exposed controls. Four CpG sites within the aryl-hydrocarbon receptor repressor (AHRR) associate with PTSD after adjustment for multiple comparisons, with lower DNA methylation in PTSD cases relative to controls. Although AHRR methylation is known to associate with smoking, the AHRR association with PTSD is most pronounced in non-smokers, suggesting the result was independent of smoking status. Evaluation of metabolomics data reveals that AHRR methylation associated with kynurenine levels, which are lower among subjects with PTSD. This study supports epigenetic differences in those with PTSD and suggests a role for decreased kynurenine as a contributor to immune dysregulation in PTSD. PTSD has been associated with DNA methylation of specific loci in the genome, but studies have been limited by small sample sizes. Here, the authors perform a meta-analysis of DNA methylation data from 10 different cohorts and identify CpGs in AHRR that are associated with PTSD.Stress-related psychiatric disorders across the life spa
- …