3,030 research outputs found

    BAYESIAN ANALYSIS OF TWO STELLAR POPULATIONS IN GALACTIC GLOBULAR CLUSTERS I: STATISTICAL AND COMPUTATIONAL METHODS

    Get PDF
    We develop a Bayesian model for globular clusters composed of multiple stellar populations, extending earlier statistical models for open clusters composed of simple (single) stellar populations (e.g., van Dyk et al. 2009; Stein et al. 2013). Specifically, we model globular clusters with two populations that differ in helium abundance. Our model assumes a hierarchical structuring of the parameters in which physical properties—age, metallicity, helium abundance, distance, absorption, and initial mass—are common to (i) the cluster as a whole or to (ii) individual populations within a cluster, or are unique to (iii) individual stars. An adaptive Markov chain Monte Carlo (MCMC) algorithm is devised for model fitting that greatly improves convergence relative to its precursor non-adaptive MCMC algorithm. Our model and computational tools are incorporated into an open-source software suite known as BASE-9. We use numerical studies to demonstrate that our method can recover parameters of two-population clusters, and also show model misspecification can potentially be identified. As a proof of concept, we analyze the two stellar populations of globular cluster NGC 5272 using our model and methods. (BASE-9 is available from GitHub: https://github.com/argiopetech/base/releases)

    Bayesian Analysis of Two Stellar Populations in Galactic Globular Clusters II: NGC 5024, NGC 5272, and NGC 6352

    Get PDF
    We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival ACS Treasury observations of Galactic Globular Clusters to find and characterize two stellar populations in NGC 5024 (M53), NGC 5272 (M3), and NGC 6352. For these three clusters, both single and double-population analyses are used to determine a best fit isochrone(s). We employ a sophisticated Bayesian analysis technique to simultaneously fit the cluster parameters (age, distance, absorption, and metallicity) that characterize each cluster. For the two-population analysis, unique population level helium values are also fit to each distinct population of the cluster and the relative proportions of the populations are determined. We find differences in helium ranging from ∼\sim0.05 to 0.11 for these three clusters. Model grids with solar α\alpha-element abundances ([α\alpha/Fe] =0.0) and enhanced α\alpha-elements ([α\alpha/Fe]=0.4) are adopted.Comment: ApJ, 21 pages, 14 figures, 7 table

    Adaptive Covariance Estimation with model selection

    Get PDF
    We provide in this paper a fully adaptive penalized procedure to select a covariance among a collection of models observing i.i.d replications of the process at fixed observation points. For this we generalize previous results of Bigot and al. and propose to use a data driven penalty to obtain an oracle inequality for the estimator. We prove that this method is an extension to the matricial regression model of the work by Baraud

    Deforming the Maxwell-Sim Algebra

    Get PDF
    The Maxwell alegbra is a non-central extension of the Poincar\'e algebra, in which the momentum generators no longer commute, but satisfy [Pμ,Pν]=Zμν[P_\mu,P_\nu]=Z_{\mu\nu}. The charges ZμνZ_{\mu\nu} commute with the momenta, and transform tensorially under the action of the angular momentum generators. If one constructs an action for a massive particle, invariant under these symmetries, one finds that it satisfies the equations of motion of a charged particle interacting with a constant electromagnetic field via the Lorentz force. In this paper, we explore the analogous constructions where one starts instead with the ISim subalgebra of Poincar\'e, this being the symmetry algebra of Very Special Relativity. It admits an analogous non-central extension, and we find that a particle action invariant under this Maxwell-Sim algebra again describes a particle subject to the ordinary Lorentz force. One can also deform the ISim algebra to DISimb_b, where bb is a non-trivial dimensionless parameter. We find that the motion described by an action invariant under the corresponding Maxwell-DISim algebra is that of a particle interacting via a Finslerian modification of the Lorentz force.Comment: Appendix on Lifshitz and Schrodinger algebras adde

    Statistical analysis of stellar evolution

    Get PDF
    Color-Magnitude Diagrams (CMDs) are plots that compare the magnitudes (luminosities) of stars in different wavelengths of light (colors). High nonlinear correlations among the mass, color, and surface temperature of newly formed stars induce a long narrow curved point cloud in a CMD known as the main sequence. Aging stars form new CMD groups of red giants and white dwarfs. The physical processes that govern this evolution can be described with mathematical models and explored using complex computer models. These calculations are designed to predict the plotted magnitudes as a function of parameters of scientific interest, such as stellar age, mass, and metallicity. Here, we describe how we use the computer models as a component of a complex likelihood function in a Bayesian analysis that requires sophisticated computing, corrects for contamination of the data by field stars, accounts for complications caused by unresolved binary-star systems, and aims to compare competing physics-based computer models of stellar evolution.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS219 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The Position of High Frequency Waves with Respect to the Granulation Pattern

    Full text link
    High frequency velocity oscillations were observed in the spectral lines Fe I 543.45nm and 543.29nm, using 2D spectroscopy with a Fabry- Perot and speckle reconstruction, at the VTT in Tenerife. We investigate the radial component of waves with frequencies in the range 8 - 22mHz in the internetwork, network and a pore. We find that the occurrence of waves do not show any preference on location and are equally distributed over down-flows and up-flows, regardless of the activity of the observed area in the line of Fe I 543.45nm. The waves observed in the lower formed line of Fe I 543.29nm seem to appear preferentially over down-flows.Comment: Article has 12 pages and 7 images. It is accepted in Solar Physics Journa

    Prognostic impact of Claudin 18.2 in gastric and esophageal adenocarcinomas

    Get PDF
    INTRODUCTION: The tight junction molecule Claudin 18.2 is selectively expressed in healthy and malignant gastric epithelial tissue and is a promising therapy target for high Claudin 18.2 expressing adenocarcinomas of the esophagogastric junction and stomach (AEG/S). METHODS: This study analyzed the prevalence, characteristics and prognostic impact of Claudin 18.2 expression in primary tumor, lymph node and distant metastasis in a large Caucasian AGE/S cohort with 414 patients. RESULTS: Claudin 18.2 was highly expressed in 17.1% of primary tumors, 26.7% of lymph node metastasis and 16.7% of distant metastasis. High Claudin 18.2 expression in lymph node metastasis and primary tumors correlated significantly (p < 0.001). High expression of Claudin 18.2 was neither associated with histomorphogical subtype, or tumor state, nor with overall survival. CONCLUSION: In Caucasian AEG/S patients, 17.1% appeared to be eligible for an anti-Claudin 18.2 therapy. Claudin 18.2 expression itself has no impact on prognosis and is not related to any tumor subtype

    Models of hydrothermal circulation within 106 Ma seafloor : constraints on the vigor of fluid circulation and crustal properties, below the Madeira Abyssal Plain

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 6 (2005): Q11001, doi:10.1029/2005GC001013.Heat flow measurements colocated with seismic data across 106 Ma seafloor of the Madeira Abyssal Plain (MAP) reveal variations in seafloor heat flow of ±10–20% that are positively correlated with basement relief buried below thick sediments. Conductive finite element models of sediments and upper basement using reasonable thermal properties are capable of generating the observed positive correlation between basement relief and seafloor heat flow, but with variability of just ±4–8%. Conductive simulations using a high Nusselt number (Nu) proxy for vigorous local convection suggest that Nu = 2–10 within the upper 600–100 m of basement, respectively, is sufficient to achieve a reasonable match to observations. These Nu values are much lower than those inferred on younger ridge flanks where greater thermal homogeneity is achieved in upper basement. Fully coupled simulations suggest that permeability below the MAP is on the order of 10−12–10−10 m2 within the upper 300–600 m of basement. This permeability range is broadly consistent with values determined by single-hole experiments and from modeling studies at other (mostly younger) sites. We infer that the reduction in basement permeability with age that is thought to occur within younger seafloor may slow considerably within older seafloor, helping hydrothermal convection to continue as plates age.Funding in support of this work was provided by the U.S. National Science Foundation (OCE-0001892), the U.S. Science Support Program for IODP (T301A7), and the Institute for Geophysics and Planetary Physics/Los Alamos National Laboratory (1317)
    • …
    corecore