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ABSTRACT

We develop a Bayesian model for globular clusters composed of multiple stellar populations, extend-
ing earlier statistical models for open clusters composed of simple (single) stellar populations (e.g., van
Dyk et al. 2009; Stein et al. 2013). Specifically, we model globular clusters with two populations that
differ in helium abundance. Our model assumes a hierarchical structuring of the parameters in which
physical properties—age, metallicity, helium abundance, distance, absorption, and initial mass—are
common to (i) the cluster as a whole or to (ii) individual populations within a cluster, or are unique to
(iii) individual stars. An adaptive Markov chain Monte Carlo (MCMC) algorithm is devised for model
fitting that greatly improves convergence relative to its precursor non-adaptive MCMC algorithm. Our
model and computational tools are incorporated into an open-source software suite known as BASE-9.
We use numerical studies to demonstrate that our method can recover parameters of two-population
clusters, and also show model misspecification can potentially be identified. As a proof of concept,
we analyze the two stellar populations of globular cluster NGC 5272 using our model and methods.
(BASE-9 is available from GitHub: https://github.com/argiopetech/base/releases).

1. INTRODUCTION

Globular clusters have long been used as probes of the
formation and evolution of galaxies (e.g., Sandage 1962;
Searle & Zinn 1978; Janes & Demarque 1983; Lee et al.
2001; Marin-Franch et al. 2009; Forbes & Bridges 2010).
Past work on globular clusters has largely assumed that
they consist of simple stellar populations, i.e., single stel-
lar populations. However, within the past decade, this
assumption has come under scrutiny as numerous studies
have produced evidence that globular clusters in fact host
multiple distinct stellar populations (e.g., Bedin et al.
2004; Gratton et al. 2004; Carretta et al. 2006; Villanova
et al. 2007; Piotto et al. 2007; Piotto 2009; Milone et al.
2012a). The implication is that most globular clusters
have undergone multiple epochs of star formation (Pi-
otto et al. 2015). As a result, globular clusters should be
viewed as a mixture of two or more simple stellar popu-
lations.

When working with photometric magnitudes, the mul-
tiple populations are most prominent in ultraviolet
(UV) color-magnitude diagrams (CMDs). While previ-
ous studies focused on visual wavelengths, recent high-
quality UV photometric data from the Hubble Space
Telescope (HST) allow us to better investigate the pres-
ence of multiple stellar populations. In fact, the vast
majority of globular clusters that have been studied in
the UV to sufficient accuracy display characteristics that
can be attributed to multiple populations (Piotto et al.
2015).

*stenning@Qiap.fr

1 Sorbonne Universités, UPMC-CNRS, UMR 7095, Institut
d’Astrophysique de Paris, F-75014 Paris, France

2 Bryant Space Center, University of Florida, Gainesville, FL

3 Argiope Technical Solutions, Florida, USA

4 Imperial College London, London, UK

5 Center for Space and Atmospheric Research, Embry-Riddle
Aeronautical University, Daytona Beach, FL

6 The Wharton School, University of Pennsylvania, Philadel-
phia, PA

Despite the substantial resources devoted to observing
globular clusters and developing stellar evolution mod-
els, the methods used to fit costly models to expensive
data typically neither take advantage of modern statis-
tical methods nor incorporate astrophysical knowledge.
Investigators often use a “chi-by-eye” approach of plot-
ting stellar evolution models on top of observed data and
adjusting the parameters with the aim of achieving an ac-
ceptable fit, where the goodness-of-fit is determined by
visual inspection. Such approaches yield inaccurate re-
sults and cannot capture uncertainties in the model fits
even when analyzing single-population star clusters (van
Dyk et al. 2009; Jeffery et al. 2015). At best, visual
model fits are inherently subjective and difficult to re-
produce, and rely on two-dimensional projections of the
data. When studying globular clusters that host multiple
stellar populations, “chi-by-eye” fails completely because
the populations may exhibit only small differences in a
few parameters, and the stellar populations cannot be
cleanly separated in the plotted CMDs.

In this article we present a Bayesian model for glob-
ular clusters that harbor two stellar populations, here-
after “two-population globular clusters.” This model is
an extension of the model for simple stellar populations
developed by von Hippel et al. (2006), DeGennaro et al.
(2009), van Dyk et al. (2009), and Stein et al. (2013).
Our two-population model assumes that a globular clus-
ter hosts two stellar populations that differ only in helium
abundance. This results in a hierarchy of properties with
parameters associated either to individual stars, stellar
populations, or the globular cluster as a whole. This
hierarchy is illustrated in Figure 1, and the parameters
are defined in Table 1; the notation and terminology in
Table 1 is introduced in Section 2.2.

Our statistical model accounts for measurement er-
rors, field star contamination, and the possibility of stel-
lar binaries. Adopting a Bayesian approach for model
fitting provides principled and reproducible estimates
and uncertainties on all parameters. Future work will
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F1G. 1.— Hierarchy of cluster, population, and stellar parameters for a two-population globular cluster. The cluster parameters—age,

metallicity, distance, and absorption—are common to all stars in the cluster. The population parameters—helium abundance and the
proportion of stars in a particular population—are common to all stars in a population but may be different between populations. The
stellar parameters—initial mass, mass ratio, and cluster membership indicator—are allowed to vary on a star-by-star basis.

incorporate variations between the light element abun-
dances and other population-level characteristics, but
for this first study we choose to limit our attention to
a single parameter that varies between the populations
and is expected to significantly alter the morphology
of the CMD. Estimating the difference in helium abun-
dance provides insight into the possible mechanisms that
produce multiple-population clusters. To fit our two-
population model, we implement an adaptive Metropolis
algorithm (e.g., Haario et al. 2001; Roberts & Rosenthal
2009; Rosenthal et al. 2011). This algorithm has the ben-
efit of improving convergence compared to a standard
(non-adaptive) Metropolis algorithm, without requiring
significant tuning by the user.

Our model and methods are incorporated into an open-
source software suite known as BASE-9 for Bayesian
Analysis of Stellar Evolution with 9 Parameters. A
combination of several computer-based stellar evolu-
tion models is used to predict a star’s photometric
magnitudes given a set of stellar evolution param-
eters: age, distance, absorption, metallicity, helium
abundance, and initial mass. To recover star clus-
ter parameters from photometric data, BASE-9 in-
cludes sophisticated MCMC routines for model fitting.
BASE-9 is available as open source code from GitHub
(https://github.com/argiopetech/base/releases), and is
also available as executables through Amazon Web Ser-
vices. Additional technical details can be found in the
BASE-9 Manual (von Hippel et al. 2014).

For main sequence and red giant stars, BASE-
9 pgives wusers a choice of the state-of-the-art
models by Dotter et al. (2008, and updated at
http://stellar.dartmouth.edu/~models/) and the com-

monly used models of Girardi et al. (2000) and Yi et al.
(2001). Other models are available for white dwarfs, as
well as for the initial-final mass relations that bridge
the stages of stellar evolution. These models are not
pertinent to the current discussion because our analyses
of two-population globular clusters are limited to main
sequence through red giant branch stars.

The rest of this article is divided into five sections.
In Section 2 we present our statistical model for two-
population globular clusters. In Section 3 we discuss
the computational challenges involved with fitting this
model, and show how adaptive MCMC techniques im-
prove convergence. In Section 4 we illustrate the capa-
bilities of our model and methods using a series of numer-
ical studies. In Section 5 we present the results of fitting
our two-population model to NGC 5272. Finally, in Sec-
tion 6 we summarize our results and discuss directions of
future research.

2. STATISTICAL MODEL FOR TWO-POPULATION
GLOBULAR CLUSTERS

2.1. Bayesian Modeling

Bayesian methods offer a principled, probability-based
approach for combining information from the current
data and our prior knowledge. They require a likeli-
hood function—the distribution of the data given the
model parameters. The likelihood function is the pri-
mary statistical tool for assessing the viability of a pa-
rameter value vis-a-vis the observed data under a pos-
tulated statistical model. The knowledge we have about
the model parameters before considering the current data
is specified in a prior distribution. Past and current in-
formation are combined in the posterior distribution of
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TABLE 1

Two-POPULATION MODEL PARAMETERS
Parameter Description Notation
Cluster Parameters
Age logq of cluster age in years Oage
Distance distance modulus in mag Om— My
Absorption absorption in the V-band in mag Oa,
Metallicity logy( of iron-to-hydrogen ratio relative to Sun in dex O[Fe/H]
Population Parameters
Proportion proportion of stars from a population Ppk
Helium Abundance mass fraction of helium by i
Stellar Parameters
Initial Mass Zero Age Main Sequence mass in solar units, Mg M;
Mass Ratio ratio of secondary to primary initial masses R;
Cluster Membership indicator for cluster membership Zi

the parameters, which is related to the likelihood func-
tion and the prior distribution through Bayes’ theorem.
With generic data and model parameters represented by
Y and 1, Bayes’ theorem gives the posterior distribution

- P(Y])P(1)
TR0 Y

where P(Y|¢) = L(¢|Y) is the likelihood function and
P(v) the prior distribution. The term P(Y), sometimes
called the “evidence,” is a normalizing constant which
makes P(¢|Y) a proper probability distribution. The
posterior distribution provides a summary of the com-
bined information in the data and our prior knowledge
and can be used to derive parameter estimates and un-
certainties.

To build a Bayesian model for two-population globu-
lar clusters, we start by defining necessary notation and
terminology in Section 2.2. In Section 2.3 we construct a
preliminary likelihood function for a simple stellar popu-
lation that accounts for measurement error, the presence
of field stars, and the possibility of binary star systems.
We extend this model to allow for two-stellar populations
in Section 2.4, and specify the full prior distribution in
Section 2.5.

PY) =

2.2. Notation

For each star in a dataset we obtain calibrated photo-
metric magnitudes using at least two filters. Following
DeGennaro et al. (2009), van Dyk et al. (2009) and Stein
et al. (2013), we refer to the observed photometric mag-
nitude in filter j for star i as z;; for j = 1,...,n and
i = 1,...,N, where N is the number of stars in the
dataset and n is the number of filters. The observed
photometric magnitudes for star ¢ are tabulated in the
column vector X; = (2;1,...,%,) ", and the known (in-
dependent) Gaussian measurement errors in the (diago-
nal) variance-covariance matrix, ;.

As discussed in Section 1, our statistical model is
based on a hierarchy of parameters. We refer to the pa-
rameters that are common to cluster stars—specifically

age, metallicity, distance, and absorption—as cluster pa-
rameters. These parameters are collected in the vector
O = (Oage, Ope/n), Om—nry 04, ). We refer to the param-
eters that are common to all stars belonging to a stellar
population, but that vary from population to population
within a cluster, as population parameters. We assume
that only helium abundance differs between the popula-
tions; helium abundance and the proportion of stars for
population k, denoted ¢y, and ¢pr, respectively, are the
population parameters. (When discussing simple stellar
populations we denote the single helium abundance with
¢y.) We refer to the population with the lower helium
abundance as “Population 1,” and that with the higher
abundance as “Population 2.” (This should not be con-
fused with the traditional use of Population I versus Pop-
ulation II stars.) As a result, assuming that the two stel-
lar populations result from two epochs of star formation,
Population 1 corresponds to the first generation of stars
and Population 2 to the second generation. For now the
only stellar parameter specific to star ¢ is its initial mass,
M;. (Two more are specified below.) The computer-
based stellar evolution model, G, takes (M;, ©, ¢y ) and
outputs a 1 x n vector of predicted photometric magni-
tudes for a star with those parameters. We express the
vector of predicted magnitudes as G(M;, ®, ¢y ). For
this study, G are the updated Dotter et al. (2008) mod-
els that include HST UV magnitudes.

2.3. Simple Stellar Populations

Before considering the likelihood function for a two-
population globular cluster, we first consider a “prelimi-
nary” likelihood function for a simple stellar population.
Following van Dyk et al. (2009), we account for unre-
solved binaries because the added luminosity of a binary
companion shifts a star off the main sequence on the
CMD, which can result in systematic errors if not prop-
erly handled. We thus treat every observed star as a pos-
sible binary system and fit its primary initial mass, M;,
and ratio of the secondary and primary initial masses,
R; < 1; a unitary system is expected to have a mass
ratio near zero. Because stellar luminosities sum, and
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magnitudes are on a log-luminosity scale, the predicted
magnitudes for (binary) star ¢ are

w; = —2.51ogq, (1O_G(M"’@’¢Y)/2-5

+10_G<MiR1:,@7¢Y)/2‘5>. (2)

Owing to the nature of the stellar evolution models tab-
ulated in G, p; is a complex non-linear function of the
underlying parameters.

We account for field star contamination by introducing
indicator variables Z = (Z3,...,Zn), where Z; = 1 if
star 7 is a cluster star and Z; = 0 if star 7 is a field star,
following the example of van Dyk et al. (2009). These
variables allow us to specify a different statistical model
for the photometric magnitudes of cluster stars versus
those of field stars. We model the observed photometric
magnitudes of cluster stars as n-dimensional multivariate
Gaussian distributions, such that

P(Xi‘zivMi,Ri;(-),(,bY,Zi = 1) =

mexp (— %(Xz _ll’z)—rzi_l(Xi _Hi))'
(3)

While this model appears simple at first glance, it is ac-
tually quite complex due to the dependence of p; on
the stellar evolution parameters, and the complex inter-
dependencies therein. That G cannot be expressed in
closed form yields challenges for inference and computa-
tion.

Following van Dyk et al. (2009), we specify a simple
model for field stars that does not depend on any of the
parameters of interest. Each field star may have its own
values for Oage, Ope/n) 5 Om—nry > 0a,, and ¢y, and we
cannot fit these parameters. We therefore simply assume
that each field star magnitude is uniformly distributed
over the range of the data, such that
P(X;|Z; =0)=c ifmin; < z;; <max;,j=1,...,n,
and zero elsewhere, where (min;, max;) is the

range of magnitude values for filter j, and ¢ =
-1
[ 15—, (max; — minj)} . We could instead incorporate
a more complex and realistic model for field stars; prop-
erties of field stars for specific Galactic fields exist and
may assist in tuning the model (e.g., Robin et al. 2012).
However, our work to date has not necessitated the addi-
tional effort because the simple model adequately identi-
fies field stars; This is illustrated using a simulation
study in Section 4.2.

A preliminary likelihood function for a simple stellar

population can now be written,

LP(MaRa Z7®,¢Y‘X,E)

N 1 1 T
:g Zixwexp(2<Xiui)

xz;l(xi — u)) +(1—2;) x P(X,|Z; = 0)]

N
|:Zi X P(X;|3;, M;,R;,©, ¢y, Z; = 1)

i=1

+(1 = Z;) x P(Xi|Z; = 0)|, (4)

where M = (Z\l]ﬁ,...,]\f]\/)7 R = (R17~-~7RN)a X =
(X1,...,Xn),and ¥ = (Xq,...,3y). The sum in (4)
represents the fact that the sample of stars is a mixture
of two subgroups: cluster stars and field stars; such dis-
tributions are known is finite mizture distributions in the
statistics literature. Interested readers are referred
to Andreon & Weaver (2015) for a review of the
application of mixture models in astronomy.

Rather than embedding G into a statistical like-
lihood function as we do in (4), the computer
model can be accounted for using a computa-
tional approach known as Approzimate Bayesian
Computation (ABC). ABC is typically used in situ-
ations where the likelihood function is either un-
available or computationally expensive to evalu-
ate, but forward simulation of synthetic data un-
der the statistical model is relatively fast (e.g.,
Ishida et al. 2015). While synthetic data can
be easily generated under the model in (4), con-
structing a distance measure for comparing ob-
served and synthetic data that accounts for the
known Gaussian measurement errors, binary star
systems, and field star contamination would be a
challenge.

2.4. The Likelihood Function for a Two-Population
Globular Cluster

We now extend P(X;|3;, M;, R;,®, ¢y, Z; =1) in (3)
and (4) to account for the fact that the sample of cluster
stars is itself a mixture of two subgroups that are the two
stellar populations. This results in a model with three
subgroups: field stars and two cluster populations. The
likelihood function for a two-population cluster is then

L(M,R,©,%,7|X,%)
N 2

= H |:Zi X quka(Xi\Ei,Mi,Ri,@,(ﬁYk,Zi =1)
i—1 k

=1

(- Z) x P(X.\Z = 0>] (5)

Evaluating (5) involves computing the expected photom-
etry for each star as if it were a member of each popula-
tion, i.e.,
M. = —2.51og (107G(M"’9"15”)/2'5
+10—G(MiRi,e,¢m)/2.5)7 (©6)

fori =1,...,N, £k = 1,2. The population proportions
in (5) must sum to one: @p1 + ¢p2 = 1.

2.5. The Prior Distribution
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A key advantage to adopting a Bayesian approach is its
ability to directly incorporate previous (independent) re-
sults through the joint prior distribution, which we spec-
ify via a set of independent priors on each parameter.
For example, we construct a prior distribution on initial
mass that is derived from the Miller & Scalo (1979) ini-
tial mass function. In particular, we specify a Gaussian
prior distribution on the log;, of primary initial masses:

P (log10 (M) ox exp (—1 (IO&O(M” * 1'02) ) ()

2 0.677

truncated to 0.1 Mg to 8 Mg, where the numerical con-
stants are taken from Miller & Scalo (1979). For the ratio
of the secondary and primary masses we use a uniform
prior distribution on [0,1]. We need not truncate the
lower end of the secondary mass because low secondary
masses indicate that the star is a unitary system (van
Dyk et al. 2009).

For the cluster parameters, ®, we incorporate ancillary
information to specify informative (i.e. narrow) prior dis-
tributions when available, and use relatively diffuse prior
distributions when such information is lacking. In par-
ticular, for Ope ), Om—nry, and 04, we use Gaussian
prior distributions (truncated to be positive in the case of
04, ), with means set according to previously published
values from independent datasets and standard devia-
tions chosen to be reasonably large. For age, 0,5, We
use a uniform prior distribution truncated to the reason-
able range of 1 Gyr to 15 Gyr, which includes all Galactic
globular clusters.

Because the population parameters, ® = (¢y1, dya,
@p1, Pp2), are the primary parameters of scientific inter-
est, we use uniform prior distributions subject to physical
constraints on their ranges. A uniform prior distribution
on the interval [0.15,0.3] is used for ¢y 1; this bounds the
helium fraction between 15% and 30%. Similarly, a uni-
form prior distribution on the interval [0.15,0.4] is used
for ¢yo, and we impose the constraint ¢ys > ¢y1. Be-
cause we do not typically have prior knowledge for the
proportion of stars in each population, ¢,; is given a uni-
form prior distribution on the interval [0,1]. When such
prior knowledge is available we advocate using a
more general beta prior distribution**; a uniform
distribution on the interval [0, 1] is equivalent to
a beta(1,1) distribution. We do not need to specify a
prior distribution for ¢, because ¢p2 =1 — ¢p1.

Ancillary measurements (e.g., proper motions) can be
used to probabilistically separate field stars from cluster
stars. When such ancillary measurements are unavail-
able, we use P(Z; = 1) = a for i = 1,..., N, where «
is based on the expected fraction of cluster stars in the
dataset. As we show in Section 5, our results are not
sensitive to reasonable choices of a.

3. STATISTICAL COMPUTATION

**A beta(a, 8) distribution for generic 0 < 7 < 1 has the density

F(O‘J’_ﬁ) a—1 _ B—1
7F(a)l“(ﬁ)¢ =),

where «, 8 > 0 are shape parameters and I'(-) is the gamma func-
tion.

The likelihood function given in (5) and the prior dis-
tributions specified in Section 2.5 complete the model for-
mulation for a two-population globular cluster. Because
our two-population model contains 4 cluster parameters,
3 population parameters, and 3 x N stellar parameters, a
“small” data set containing only 3000 stars has a param-
eter space with 9007 dimensions. There are also (possi-
bly non-linear) correlations amongst the parameters, see
O’Malley et al. (2013). The resulting posterior distri-
bution is thus complex and high-dimensional, requiring
MCMC techniques for model fitting (see Brooks et al.
(2011) for an overview of MCMC). MCMC algorithms
use an iterative approach to explore the posterior distri-
bution. In standard MCMC algorithms, again letting v
represent generic parameters, at iteration [ 4+ 1 new pa-
rameter values ¢ (1) are generated from a distribution
I" that depends only on the data and the current param-
eter values ¥, After L iterations, MCMC produces a
correlated sample of parameter values, {w(l), . ,z/J(L)},
known as an MCMC' chain.

With an appropriate choice of I' and after a suf-
ficient number of iterations, known as burn-in, the
chain converges to a stationary distribution and the
MCMC sample can be regarded as a (correlated) sam-
ple from P(¢|Y). A popular method of obtaining T" is
the Metropolis algorithm (Metropolis et al. 1953). Af-
ter drawing ¢! from some starting distribution, the
Metropolis algorithm consists of two-steps. For itera-
tions [ =2,...,L:

1. Draw a “proposed state” ¥(*) from a proposal dis-
tribution that is symmetric about (¢—1 (e.g., a
Gaussian distribution centered at ¢(!~1).

()
2. With probability min(l, %)7 set ) =

™). Otherwise, set 1)) = (=1,

The efficiency of the Metropolis algorithm depends
heavily on the choice of proposal distribution in the first
step. If the distribution is too narrow, many proposed
) are accepted (i.e., 1) is set to ¥*) in the second
step) but MCMC takes small steps. Consequently, the
chain may take a long time to converge to the poste-
rior distribution and {€M) ... ¢5)} will have high au-
tocorrelation. Conversely, if the proposal distribution is
too wide, there will be a few big steps, but many re-
jected ¥*). When this happens, the chain can become
stuck at a particular parameter value for many iterations
and not fully explore the posterior distribution. A good
choice of proposal distribution is generally non-obvious
and requires either fine-tuning or more sophisticated ap-
proaches.

Our MCMC strategy for fitting the two-population
model relies on two key techniques: marginalization and
adaptation. Complex posterior correlations and multiple
modes frustrate convergence of MCMC. By marginaliz-
ing over (i.e., integrating out) the stellar parameters, an
approach initially devised by Stein et al. (2013), we lessen
multi-modality and dramatically reduce the dimension
of the posterior distribution from 9007 to 7 for a data
set with 3000 stars. Adapting the proposal distribution
to the resulting (marginal) posterior distribution further
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improves efficiency (compared to a standard Metropolis
algorithm). We discuss marginalization and adaptation
in Sections 3.1 and 3.2, respectively.

3.1. Marginalization via Numerical Integration

With the full joint posterior distribution denoted by
P(O®,®,M,R,Z | X), the marginal posterior distribu-
tion of (@, @) is given by

P(©,® ]| X)

:/.../(Z~-~ZP(®,{>,M,R,Z|X))deR

xP(©,8)]] {c(@, ®)P(Z; =1)

i=1

+ P(X|Z; = 0)P(Z; = 0)]7

where ¢(©, ®)

2
=//quka(XAzi,Mi,Ri,@,qﬁm,Zi=1>
k=1

When P(Z; = 1) = a for i = 1,...,N (i.e., when all
stars have the same probability of being cluster stars),
(8) and (9) reduce to P(©,® | X) x
N
r©.®)][ |(1-a)Pxiz —0
i=1

2

b [ [ oS PGS M Ry ©,0v1. 2= 1)
k=1

This integral cannot be evaluated analytically because
P(X; | Mi,R;,©,¢yi,Z; = 1) depends on M; and
R; through G (Stein et al. 2013). Instead, we employ
brute-force numerical integration via Riemann sums. By
marginalizing out the 3NN stellar parameters we reduce
the dimension of the posterior distribution from typically
thousands to just seven.

3.2. Adaptive MCMC

Because the remaining parameter vector (©,®) af-
ter marginalizing out M, R, and Z is just seven-
dimensional, we initially implemented a standard
Metropolis algorithm to sample from P(®,®|X). How-
ever, we found the trial-and-error approach to tuning
the (seven-dimensional) proposal distribution to be diffi-
cult; this is not surprising given the correlations among
the components of (@, ®) in G. To avoid arduous fine-
tuning and make BASE-9 more accessible to users less fa-
miliar with MCMC, we implement an Adaptive Metropo-
lis (AM) algorithm (e.g., Haario et al. 2001; Roberts &
Rosenthal 2009; Rosenthal et al. 2011). Whereas an it-
eration of a standard Metropolis algorithm only depends

on the most recent value in the MCMC chain, an AM al-
gorithm uses the entire history of the chain to adapt the
proposal distribution at each iteration. This, however,
violates a defining property of a Markov chain: the dis-
tribution of a value in the chain can only depend on the
history of the chain through its most recent value. Thus,
care must be taken to guarantee an AM algorithm con-
verges properly. As recounted in Rosenthal et al. (2011),
AM algorithms must satisfy the Diminishing Adaptation
Condition: the amount of adaptation at iteration [ must
go to 0 as [ — oo. The Diminishing Adaptation Con-
dition is key; other technical conditions are almost al-
ways satisfied except in specially constructed examples
(Rosenthal et al. 2011). Readers interested in additional
mathematical details are encouraged to consult Rosen-
thal et al. (2011) and references therein.

After marginalizing over M, R, and Z, the result-
ing marginal posterior distribution P(®,®|X) given in
(11) appears roughly Gaussian. This is illustrated in
Figure 2, which displays the matrix of two-dimensional
scatterplots of 25,000 posterior draws from P(®, ®|X).
(The data we used to construct these plots are photo-
metric magnitudes from NGC 5272. Details are pro-
vided in Section 5.) Based on results in Gelman et al.
(1996), the optimal proposal distribution for a Gaus-
sian posterior distribution with a d-dimensional covari-
ance matrix Y is itself a Gaussian distribution with
covariance matrix [(2.38)2 /d| Y. Because the actual

form of the posterior distribution is unknown, for iter-
ation [ 4+ 1 we use a multivariate ¢ proposal distribution
with 6 degrees of freedom' | centered at the current

value of (@, ®) and with scale equal to [(2.38)2 /7] =0,

Here, = is the empirical variance-covariance matrix
of {(6(1), <I>(1)), cl (6(”, <I>(l))}. Because we recalcu-
late 2V at every iteration, the proposal distribution
adapts at every iteration based on the past history of
the chain. As [ — oo, the empirical distribution of
{(©W, W) . (©V &)} approaches the marginal
posterior distribution P(®, ®|X), improving efficiency.
Furthermore, =" stabilizes and thus the adaptation di-
minishes as required.

Alternative modern MCMC approaches include
Hamiltonian Monte Carlo (see, e.g., http://mc-
stan.org) and Riemann manifold Monte Carlo
methods (Girolami & Calderhead 2011). Such
methods are particularly useful when the poste-
rior distribution exhibits strong correlations and
curving degeneracies. Hamiltonian Monte Carlo
(HMC), for example, borrows ideas from Hamil-
tonian dynamics to make sampling more efficient,
but typically requires the likelihood to be avail-
able analytically and that its derivatives with re-
spect to the model parameters be available. Sim-

TtFor generic parameters ¥ with p-dimensional scale matrix €,
at iteration [ + 1 the multivariate ¢ proposal distribution with v
degrees of freedom has the density

Tl(v 4+ p)/2]
T /2)wP/2P/2]1/2[1 + L(e(+D) — o) To-1(el+l) — g())(v+p)/2°

The multivariate t distribution has a similar “bell shape” to the
multivariate Gaussian distribution, but with fatter tails.
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ilar caveats apply to Riemann manifold Monte
Carlo (RMMC). While we could develop an ana-
lytical emulator of the function G to deploy HMC
or RMMC, the additional effort is unnecessary
due to the roughly Gaussian shape of P(©, ®|X);
the AM algorithm automatically improves sam-
pling efficiency by adapting the proposal distri-
bution.

When implementing the AM algorithm, we first run
the sampler in “tuning” mode. The goal of this tun-
ing period is not to obtain an optimal proposal distri-

bution, but rather to sufficiently explore the posterior

distribution and generate a reasonable EW for the AM
algorithm (see the Appendix for details). Once we have

calculated 2 from the tuning period, the first 1000
iterations of the AM algorithm use the multivariate ¢

proposal distribution described above, with =20 = g0
for { = 1,...,1000. This non-adaptive period is neces-
sary to generate a sufficiently large sample to estimate
posterior covariances before adapting the proposal dis-
tribution. At iteration 1001 and at every subsequent

20 is the empirical covariance matrix of the

iteration,
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previous [ iterations.

The efficiency of our AM algorithm is demonstrated in
Figure 3. There, we compare the performance of our AM
algorithm to that of a standard Metropolis algorithm for
sampling the same posterior distribution. The standard
Metropolis sampler is identical to the AM sampler except

2 is fixed at =V throughout. Both algorithms are im-
plemented with the same starting values, the same tuning
period, and use the same data as in Figure 2. The pro-
posal distribution in the AM algorithm begins adapting
at iteration 1001, after which there is an obvious differ-
ence in performance between AM and standard Metropo-
lis. Standard Metropolis struggles as the MCMC chain
repeatedly becomes stuck. While AM also sticks initially,
adapting the proposal distribution quickly frees the chain
and leads to increased efficiency. As expected, the AM
algorithm becomes increasingly efficient as the number
of iterations increases.

4. SIMULATION STUDIES
4.1. Recovering Two Population Clusters

As an initial test of our method, we simulate two-
population globular clusters under three scenarios, with
ten replicate clusters per scenario. The three scenarios
differ in the percentage of stars belonging to Population
1: 50%, 80%, and 100% for scenario 1, 2, and 3, re-
spectively. Scenario 3 therefore contains ten replicates
of a single-population cluster, which we intentionally fit
with our (incorrect) two-population model to demon-
strate how model misspecification can potentially be
identified. Each cluster is simulated with 8,5 = 10.08,
Om—nrr, = 15.375, 04, = 0.372, and Q[Fe/H] = —1.5,
which are “average” published values across the clus-
ters compiled in Harris (1996, and updated in 2010
at http://physwww.mcmaster.ca/~harris/mwgc.ref). In
the simulations, we set ¢y; = 0.24 and ¢y, = 0.29, so
that the true difference in helium abundance is 0.05. We
simulate 30,000 cluster stars and 1000 field stars per clus-
ter, and every star is generated as a single-star system.
(Future work will include binaries.) For each cluster we
generate photometric magnitudes in five filters, corre-
sponding to the filters in HST UVIS photometry (Piotto
et al. 2015): F275W, F336W, F438W, F606W, and
F814W . Details about these filters are provided in Sec-
tion 5. The photometric magnitudes for each star are
simulated with uncorrelated Gaussian measurement er-
ror that is a function of both the wavelength band and
the magnitude, as depicted in Figure 4.

Of the 31,000 stars generated per cluster, about 90%
are dropped from the simulated cluster for one of two
reasons. First, there is a threshold signal-to-noise ratio
that eliminates stars too dim to be observed under real-
istic conditions. Second, we believe the stellar evolution
models are inaccurate for fainter main sequence stars and
we therefore impose a magnitude cutoff on real photom-
etry (van Dyk et al. 2009; DeGennaro et al. 2009). We
impose the same cutoff on simulated photometry so that
our simulation results are as informative as possible. The
exact cutoff we use depends on the assumed distance to
the cluster (see Section 5). In the simulations, we discard
stars with a photometric magnitude in the F275W filter
greater than 23. After losing stars due to low signal-
to-noise and the F275W magnitude cutoff, about 3000

simulated stars remain per cluster.

We use prior distributions for 0., s, , 04, , and Ojpe/m
with means equal to their true values under the simu-
lation; the prior standard deviations were set to 0.05,
0.124, and 0.05, respectively. The prior distributions
on the population parameters are as described in Sec-
tion 2.5. We assign P(Z; = 1) = a = 0.95 for
1=1,...,N. This is the value for o we use when analyz-
ing NGC 5272 in Section 5 after testing the sensitivity
to the choice of a.

We use our AM algorithm to explore P(©®,®|X) for
each of the thirty simulated clusters. We run one chain
per cluster for 25,000 iterations after the tuning period.
Inspection of the trace plot for each chain shows that all
the chains reach their apparent stationary distributions
within the first 5000 iterations. We discard the first 5000
iterations of each chain as burn-in and base inference on
the remaining 20,000 iterations. Results for the three
scenarios appear in Figure 5.

The results for scenarios 1 and 2 are presented in the
top four rows of Figure 5. There, we observe that our
method is performing reasonably well with respect to
recovering the difference in helium abundance and the
proportion of stars in each population. This is encour-
aging, as our main inferential goal is to recover the dif-
ference in helium abundance. Unfortunately, there is a
systematic difference between the fitted parameters and
the true values of the parameters under the simulation.
The reasons for this discrepancy are examined and dis-
cussed in detail in Section 4.3 of Stenning (2015). It
was discovered that the deviations increase with the size
of the measurement errors, suggesting an influence of the
prior distribution. The cause is that as the sample size in-
creases, the influence of the prior distribution on primary
initial mass does not diminish because there is only one
observation (i.e. one star) per mass parameter. Future
work will focus on fitting the distribution of the masses
to hopefully eliminate the deviations. For now, we sim-
ply note that the systematic deviations are small relative
to both the systematic errors stemming from the under-
lying stellar evolution model and to the best available
statistical errors on these parameters using other meth-
ods. For example, minimum star-by-star [Fe/H] statis-
tical and systematic errors are approximately 0.015 and
0.03 dex, respectively (Carretta et al. 2009). Typical sta-
tistical errors for distance moduli are o(m — My) = 0.1
mag and those for absorption are o(Ay) = 0.1Ay, with a
lower limit of 0.03 mag (Harris 1996, and as updated at
http://physwww.mcmaster.ca/~harris/mwgc.ref). Fur-
thermore, we can adequately recover the relative differ-
ence in helium abundance because the systematic differ-
ences are in the same direction and to similar degree for
both populations.

To check that the recovered helium abundance differ-
ence is due to the presence of two populations and is not
an artifact of the method, in scenario 3 we intentionally
fit simulated single-population clusters with the (now in-
correct) two-population model. The results for the clus-
ter parameters are similar to those in scenarios 1 and 2;
see row 5 of Figure 5. This is expected because the cluster
parameters are common to both populations. However,
in the last row of Figure 5, the results for the proportion
of stars in Population 1 indicate model misspecification.
Specifically, we observe that the fitted value is close to
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population clusters. In our numerical studies, the photometric
magnitudes for each star are simulated with Gaussian measurement
error that is representative of the measurement error we expect for
observed data, which is depicted above. Here, o is the standard
deviation of the Gaussian measurement error.

either zero or one (replicates 2, 3, 8, and 10) and/or the
95% interval is very wide, spanning most of the range
from [0, 1] (replicates 1, 2, 4, 5, 6, 7, 9, and 10). Both
of these outcomes suggest that a second population may
not be present in the data.

We caution that investigating intervals and esti-
mates in this way does not provide a formal diag-
nostic for model misspecification but results such
as those under scenario 3 should be considered as
“smoking-gun” evidence that the two-population
model has been applied to a single-population
cluster. For now, we intend our model to be used
in cases where there are two prominent popula-
tions as viewed in CMDs; e.g., two populations
for NGC 5272 can be seen in the rightmost CMD
in Figure 6. Formal criteria to infer the num-
ber of populations in a cluster will be included
when our model and algorithms are extended to
accommodate three or more populations.

4.2. Testing the Field Star Model

To test the adequacy of using the simple uni-
form model described in Section 2.3 for field
star magnitudes, we simulate five replicate single-
population clusters with parameters equal to
those reported for NGC 5272 in the updated
Harris (1996) globular cluster catalogue. Field
stars are simulated from the Besangon model
(Robin et al. 2003) with Galactic I,b = 42.2170,
+78.7069, though we increase the field size 100x
(from 0.0013 to 0.130 square degrees) relative to
that for NGC 5272 to provide an ample sample in
each replication. After removing stars due to low
signal-to-noise and an imposed magnitude cutoff
at F275W = 22.074 (see Section 5 for a discussion
regarding our choice of cutoff), there are approx-

TABLE 2
CONFUSION MATRICES FOR CLUSTER MEMBER VS. FIELD STAR

Replication 1

Observed
Field Star Cluster Member
. Field Star 111 0
Predicted
reduete Cluster Member 1 2103
Replication 2
Observed
Field Star Cluster Member
. Field Star 110 0
Predicted
reduete Cluster Member 0 2105
Replication 3
Observed
Field Star Cluster Member
. Field Star 109 0
Predicted
reduete Cluster Member 2 2080
Replication 4
Observed
Field Star Cluster Member
. Field Star 109 0
P
redicted Cluster Member 2 2130
Replication 5
Observed
Field Star Cluster Member
. Field Star 111 0
Predicted Cluster Member 1 2125

imately 2100 cluster stars and 110 field stars per
replicate data set. Using BASE-9, we are able
to infer the posterior probability that a star is a
cluster member; see Stein et al. (2013). Those
stars with greater than 50% posterior probabil-
ity are classified as cluster stars. We can evalu-
ate the resulting classification using the confusion
matrices in Table 2. A confusion matrix is a table
with columns representing true classifications and
rows representing predicted classifications. For
example, the confusion matrix for Replication 1
reveals that 111 field stars are correctly identi-
fied as such, while 1 field star is misclassified as a
cluster star; all 2103 clusters stars in Replication
1 are correctly classified. In this simulation, the
simple model for field star magnitudes misiden-
tifies field stars as cluster stars < 2% of the time
and never misidentifies cluster stars as field stars.
Based on these results, a more complex model for
field stars seems unnecessary.

5. ANALYSIS OF NGC 5272

In this section we apply our method to photometric
observations of NGC 5272 in order to provide a proof of
concept. Our main objective is to estimate the difference
in helium abundance between the two postulated stellar
populations, as well as the proportion of stars in each. A
secondary objective is to evaluate the underlying stellar
evolution model by examining how well the fitted models
agree with the observed data. We are of course also in-
terested in estimating the other cluster parameters. The
observed data are HST UVIS photometry (Piotto et al.
2015) in five filters per star: F275W, F336W, F438W,
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F606W, and F'814W. A detailed description of the data
collection and processing appears in Piotto et al. (2015).

The data for NGC 5272 consists of 179,330 observed
stars; its CMD appears in Figure 6. Because fitting our
two-population model with this amount of data is cur-
rently computationally impractical, we reduce the ob-
served data. The stars that remain after reduction are
indicated with black dots in the CMDs in Figure 6; dis-
carded stars are indicated with grey dots. Our data-
reduction routine proceeds as follows:

1. Pixel location errors are used to remove stars that
are likely field stars and quality flags are used to
remove stars with poor photometry.

2. By examining the CMD we make general cuts to
remove some horizontal branch stars because stel-
lar evolution models for this transitionary phase
are not included among our current set of stellar
evolution models.

3. Because we believe that the computer models are
particularly inaccurate for the faintest stars, we im-
pose a magnitude cutoff of F275W = 22.074. The
cutoff is set at My = 7, based on the distance mod-
ulus for the cluster reported in the updated Harris
(1996) globular cluster catalogue. We use an abso-
lute magnitude-based cutoff to enable consistency
in future analyses of different clusters.

4. We sample from the remaining stars so that the
final photometry set contains 3000 stars. To do
this, we visually identify the main sequence turn
off and choose a magnitude cut point to separate
main sequence from post-main-sequence stars. In
doing so, we err on the side of including (nearly)
all post-main-sequence stars above the cutoff. For
NGC 5272, the cutoff is at F'336W = 18.8, which
we indicate with the horizontal dotted line in Fig-
ure 6. We sample 1500 stars each from above and
below the cutoff, such that our final photometry
set contains an equal mix of main sequence and
post-main-sequence stars.

Because accurate photometric errors are not yet avail-
able for this UV photometric dataset, we construct ap-
proximate errors using the HST exposure time calculator
and adopt a conservative minimum error of 0.01 magni-
tude. As with our simulated clusters in Section 4, the
errors are a function of both filter and wavelength. Ad-
ditional discussion is provided in Wagner-Kaiser et al.
(2015).

For model fitting we assume all stars are singletons,
which saves significant computation time and should of-
fer a reasonable approximation because the expected
percentage of binaries is only about 5% (Milone et al.
2012b). The prior distributions for Ope/m), Om— s, and
04, we use are

Opre/m) ~ N (—1.5,0.05%),
Op— a1y, ~ N(15.07,0.05%), and
04, ~ TN(0.031,0.01%0),

where N (u,0?) is a Gaussian (i.e., Normal) distribution
with mean p and standard deviation o, and TN (i1, 02; 0)

TABLE 3
PARAMETER ESTIMATES FOR NGC 5272

Quantity Fitted Value 95% CI
Oage 10.072 (10.070, 10.074)
Olre/n) -1.465 (-1.468, -1.462)
O — a1y 15.119 (15.115, 15.123)
04, 0.075 (0.073, 0.077)
dy1 0.274 (0.272, 0.276)
Py2 0.324 (0.322, 0.325)
oya — dy1 0.0495 (0.0481, 0.0511)
Op1 0.447 (0.419, 0.475)

is a Gaussian distribution with mean p and standard
deviation o, truncated to be positive. Prior means for
Orpe/n)s Om—nry > and 04, come from the updated Harris
(1996) globular cluster catalogue, with standard devia-
tions chosen to be relatively conservative. Ancillary in-
formation such as proper motions will eventually allow
us to specify P(Z; = 1) = «; on a star-by-star basis. For
now, however, we set P(Z; =1) =« foralli=1,...,N
and investigate the sensitivity of results to a. Because
we do not expect the fraction of field stars to be lower
then 1% or higher than 10% we repeat our analysis with
a= 0.9, 0.95, and 0.99. To fit each of the three resulting
models, we run our AM algorithm for 30,000 iterations
after the tuning period. Inspection of the trace plots
shows that every chain converges to its apparent sta-
tionary distribution by iteration 5,000. We discard the
first 5,000 iterations as burn-in, and base inference on
the remaining 25,000 MCMC draws. The results of the
sensitivity analysis are presented in Figure 7; posterior
means are indicated by an ‘x’, and the horizontal bars
are 95% posterior intervals. While the choice of a has
a noticeable effect on the results, the effect is small and
not scientifically meaningful. We therefore use a = 0.95
for the remainder of our analysis.

After specifying «, we explore P(®, ®|X) using four
separate chains with different starting values. This is
done to diagnose proper convergence; if all chains even-
tually converge to the same distribution then our results
are robust both to the starting values and to Monte
Carlo variability among the chains. Each chain is run
for 30,000 iterations after the tuning period. Inspection
of the trace plots shows that every chain converges to the
same apparent stationary distribution by iteration 5,000;
see Figure 8. For each chain we discard the first 5,000
iterations as burn-in, and keep the remaining 25,000 iter-
ations. We also compute the Gelman-Rubin diag-
nostic (Gelman & Rubin 1992) on the post-burn-

in iterations for each parameter, and all R values
are equal to 1.'% Fitted values and 95% intervals for
(©, ®), as well as for the difference in helium abundance,
¢yo—dy1, are given in Table 3. The fitted values are pos-
terior means based on the 100,000 MCMC draws pooled
from all four chains. The reported 95% credible inter-

H'We use the gelman.diag function (with autoburnin=FALSE)
in the coda package from the R programming language to compute

the Gelman-Rubin diagnostic, R, also known as the “potential scale

reduction factor.” Values of R substantially above 1, e.g. greater
than 1.1, indicate a lack of convergence.
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In Figure 9 we present a matrix with CMDs for NGC
5272 constructed with all pairs of photometric magni-
tude bands, along with the fitted isochrones. The fitted
isochrone for Populations 1 and 2 are represented by cyan
and purple curves, respectively. It is clear that the fitted
isochrones match the observed data well in some CMDs,
and poorly in others. In particular, CMDs that incor-
porate F'438W do not tend to be well fit. This suggests
subtle inconsistencies in the stellar evolution model that
depend on wavelength; we discuss this further in Sec-
tion 6. Examining these inconsistencies is a useful first
step towards designing computer models that can better
predict the observed data.

6. SUMMARY AND DISCUSSION

In this article we present a Bayesian approach for fit-
ting two-population globular clusters. This is a substan-
tial improvement over the common approach of plotting
computer-model predictions on top of observed data and
tuning the parameters until the two appear to agree.
By formulating a Bayesian model, we do not need to
rely on any or all two-dimensional projections of five-
dimensional data during model fitting. This is impor-
tant for fitting multiple-population clusters because the
populations overlap in complex and non-obvious ways in
CMDs. We demonstrate with a simulation study that our
method can adequately recover the population parame-
ters of two-population clusters. Specifically, we success-
fully recover the proportion of stars in each population

and the difference in helium abundance between popula-
tions. We also demonstrate how to diagnose model mis-
specification in the event that our two-population model
is applied to a single-population cluster. In particular, we
show that (i) the fitted value for the proportion of stars
in Population 1 is close to zero or one, and/or (ii) the
posterior interval for the proportion extends over most
of the range from zero to one.

After demonstrating the capabilities of our two-
population model, we analyze NGC 5272 as a proof of
concept. We verify that the value we specify for « is not
overly influential, and explore the marginal posterior dis-
tribution of the cluster and population parameters using
an AM algorithm that we devised for this purpose; the
AM algorithm greatly improves convergence compared
to its precursor non-adaptive Metropolis algorithm. To
diagnose convergence we run four separate chains per
cluster, all with different starting values. We find that
the four separate chains quickly converge to the same
apparent stationary distribution.

In addition to estimating the difference in helium abun-
dance in NGC 5272, a secondary objective is to examine
the model fits and investigate properties of the under-
lying stellar evolution model. In general, we find that
the fitted models do not agree with the observed data in
CMDs involving the F'438W filters. This disagreement is
perhaps not surprising as model development follows ob-
servations, and data are only recently available in some of
these HST passbands. While we cannot conclude solely
on the basis of our analysis of NGC 5272 that mismatch
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between fitted models and observed data is due to sys-
tematic errors in the computer model, further examina-
tion is warranted. If this pattern persists with additional
clusters and with verified photometric errors it may be
that the morphologies in the computer model differ sys-
tematically from those in observed data; such a discrep-
ancy has been discussed for fainter main sequence stars
(van Dyk et al. 2009; DeGennaro et al. 2009). Like any
model fitting technique, our Bayesian approach relies on
the accuracy of the underlying stellar evolution models.
Nevertheless, imperfect results can provide key feedback
for improving the underlying models.

Having demonstrated the capabilities of our model
and methods for two-population globular clusters,
work will focus on deploying them on many additional
clusters. Subsequently, we will extend our technique to
include more than two stellar populations per cluster
and incorporate additional population-level parameters
such as the carbon, nitrogen, and oxygen abundances. It
is only by pairing such principled statistical approaches
with recent high-quality HST visual/UV observations
that we can estimate and interpret the parameters of
multiple-population globular clusters.
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TABLE 4
TUNING PERIOD SCALING FACTORS
range of a s(a)
a>0.9 2
0.7<a<0.9 1.8
05<a<0.7 1.5
04<a<0.5 1.2

015>a<02 1/1.5
0.05>a<015 1/1.8
a < 0.05 1/2

APPENDIX
ADAPTIVE METROPOLIS TUNING PERIOD

The tuning period for our AM algorithm proceeds as follows:

1. Set j = 0. Draw ¥+ ~ N(lIl(d), 25A(j)) for d =1,...,99, where ¥ is the starting value of the chain and

A g a diagonal covariance matrix with fixed variances, both of which are specified by the user. The constant
factor of 25 is chosen so that the chain takes “big steps” to explore the parameter space.

. Set j =74 1. If j = 20, go to Step 5. Else, draw g (1005+k) N(\P(100j+k_1),5A(j_l)) for k =1,...50. During

these iterations the chain takes “medium steps” to explore the parameter space, which may assist in jumping
between modes. Next, draw ¥(1007++) N(\Il(looﬁk_l), A(]_l)) for £k =51,...,100.

. Calculate the acceptance rate, a, of iterations 1005 + 51 to 2005. If 0.2 < a < 0.4, proceed to Step 4. Else, set

AY) = ¢(a)AY™Y | where ¢(a) is given in Table 4, and return to Step 2.

. Set AY) = AUTY then set j =4+ 1. Draw g (1005+k) N(\Il(100j+k_1),A(j_1)) for k = 1,...,100 and

calculate a for iterations 1005 + 1 to 200j. If 0.2 < a < 0.4, proceed to Step 5. Else, set AV = g(a)A(jfl) and
return to Step 2.

. Discard the first 100 draws produced during Step 1 and calculate the empirical covariance matrix of all remaining

draws, which is then denoted by EW. Then terminate the tuning period.

Once we have calculated 2 from the tuning period, the AM algorithm proceeds as described in Section 3.2.



