36 research outputs found

    A global synthesis reveals biodiversity-mediated benefits for crop production

    Get PDF
    Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society. [Abstract copyright: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

    Rocky Mountain Spotted Fever, Panama

    Get PDF
    We describe a fatal pediatric case of Rocky Mountain spotted fever in Panama, the first, to our knowledge, since the 1950s. Diagnosis was established by immunohistochemistry, PCR, and isolation of Rickettsia rickettsii from postmortem tissues. Molecular typing demonstrated strong relatedness of the isolate to strains of R. rickettsii from Central and South America

    Environmental performance of miscanthus-lime lightweight concrete using life cycle assessment:Application in external wall assemblies

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record. In the UK context, miscanthus is a potential alternative perennial crop for the development of bio-based building materials. This paper presents the environmental benefits of using miscanthus shives in lightweight blocks and their potential application in wall assemblies. A systemic life cycle assessment (LCA) is carried out for miscanthus-lime blocks, and the effects of binder type and binder content are discussed. The environmental performance-based analysis reveals that miscanthus blocks can capture 135 kg CO eq/m for an assumed 100-years life period. The impact analysis using the University of Leiden, institute of environmental science (CML) baseline (v4.4) method shows that 75% of the greenhouse gas emissions are attributable to the production of mineral binders. A reduction of binder to aggregate ratio from 2.0 to 1.5 reduces greenhouse gas emissions by 32.9%. The use of 10 wt% mineral additions can potentially stabilise blocks while having little effect on their overall environmental impacts. The environmental profiles of wall systems incorporating miscanthus-lime blocks have been evaluated in this this study. Combining miscanthus blocks with fired clay bricks enables a potential low carbon retrofitting technique for the current stock of residential buildings in the UK. Timber-framed system filled with miscanthus blocks enables a carbon storage of ~97.3 kg CO eq/m , which presents a potential carbon offsetting strategy in new-build dwellings. Consideration should be given to the potential negative impacts related to agricultural activities for the production of miscanthus shives. The largest negative environmental impact was ozone layer depletion, where a relative difference of 12.8% was recorded between miscanthus timber-framed wall and a typical solid wall insulated with mineral wool. It appears that miscanthus-lime composites can substantially improve the environmental profile of wall assemblies and sustainability be applied in existing uninsulated masonry walls or incorporated in timber- framed new-build houses.Engineering and Physical Sciences Research Council (EPSRC)Natural Environment Research Council (NERC)NERC GW4+ Doctoral Training Partnership studentshi

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Complement component C4 structural variation and quantitative traits contribute to sex-biased vulnerability in systemic sclerosis

    Get PDF
    Altres ajuts: Fondo Europeo de Desarrollo Regional (FEDER), "A way of making Europe".Copy number (CN) polymorphisms of complement C4 play distinct roles in many conditions, including immune-mediated diseases. We investigated the association of C4 CN with systemic sclerosis (SSc) risk. Imputed total C4, C4A, C4B, and HERV-K CN were analyzed in 26,633 individuals and validated in an independent cohort. Our results showed that higher C4 CN confers protection to SSc, and deviations from CN parity of C4A and C4B augmented risk. The protection contributed per copy of C4A and C4B differed by sex. Stronger protection was afforded by C4A in men and by C4B in women. C4 CN correlated well with its gene expression and serum protein levels, and less C4 was detected for both in SSc patients. Conditioned analysis suggests that C4 genetics strongly contributes to the SSc association within the major histocompatibility complex locus and highlights classical alleles and amino acid variants of HLA-DRB1 and HLA-DPB1 as C4-independent signals

    Performance Comparison Of Locking Caches

    No full text
    Static use of locking caches is a useful solution to take advantage of cache memories in real-time systems. Locking cache operates preloading and locking a set of instructions, thus cache contents are a-priori known and remain unchanged during system operation. This solution eliminates the unpredictable behavior of conventional caches, making easy to accomplish the schedulability test through simple and well-known tools. Once attained predictability, in this paper we analyze the performance of this schema compared to conventional cache, as function of system size and cache size. We also study the influence of the scheduler (either fixed or dynamic priority). Copyright 2003 IFAC Keywords: real-time systems, cache memories, scheduling algorithms, performance analysis, genetic algorithms. 1

    Mucin architecture behind the immune response: Design, evaluation and conformational analysis of an antitumor vaccine derived from an unnatural MUC1 fragment

    No full text
    A tripartite cancer vaccine candidate, containing a quaternary amino acid (a-methylserine) in the most immunogenic domain of MUC1, has been synthesized and examined for antigenic properties in transgenic mice. The vaccine which is glycosylated with GalNAc at the unnatural amino acid, was capable of eliciting potent antibody responses recognizing both glycosylated and unglycosylated tumour-associated MUC1 peptides and native MUC1 antigen present on cancer cells. The peptide backbone of the novel vaccine presents the bioactive conformation in solution and is more resistant to enzymatic degradation than the natural counter part. In spite of these features, the immune response elicited by the unnatural vaccine was not improved compared to a vaccine candidate containing natural threonine. These observations were rationalized by conformational studies, indicating that the presentation and dynamics of the sugar moiety displayed by the MUC1 derivative play a critical role in immune recognition. It is clear that engineered MUC1-based vaccines bearing unnatural amino acids have to be able to emulate the conformational properties of the glycosidic linkage between the GalNAc and the threonine residues. The results described here will be helpful to the rational design of efficacious cancer vaccines
    corecore