170 research outputs found

    Direct chemical in-depth profile analysis and thickness quantification of nanometer multilayers using pulsed-rf-GD-TOFMS

    Get PDF
    7 páginas, 3 figuras, 2 tablas.Nanometer depth resolution is investigated using an innovative pulsed-radiofrequency glow discharge time-of-flight mass spectrometer (pulsed-rf-GD-TOFMS). A series of ultra-thin (in nanometers approximately) Al/Nb bilayers, deposited on Si wafers by dc-magnetron sputtering, is analyzed. An Al layer is first deposited on the Si substrate with controlled and different values of the layer thickness, t Al. Samples with t Al = 50, 20, 5, 2, and 1 nm have been prepared. Then, a Nb layer is deposited on top of the Al one, with a thickness t Nb = 50 nm that is kept constant along the whole series. Qualitative depth profiles of those layered sandwich-type samples are determined using our pulsed-rf-GD-TOFMS set-up, which demonstrated to be able to detect and measure ultra-thin layers (even of 1 nm). Moreover, Gaussian fitting of the internal Al layer depth profile is used here to obtain a calibration curve, allowing thickness estimation of such nanometer layers. In addition, the useful yield (estimation of the number of detected ions per sputtered atom) of the employed pulsed-rf-GD-TOFMS system is evaluated for Al at the selected operating conditions, which are optimized for the in-depth profile analysis with high depth resolution.This work is supported by the European Union 6th framework program within the EMDPA project (contract No 032202 (NMP3-CT-2006-032202)) and by Spanish Ministry of Science (grant No MAT2007-65097-C02 and FIS2008-06249). R. Valledor acknowledges financial support from FPU Ph.D. Grant from Ministry of Education of Spain. Additionally, J. Pisonero and C. Quiros acknowledge financial support from “Ramon y Cajal” Research Program of the Ministry of Education of Spain, cofinanced by the European Social Fund.Peer reviewe

    Integrated luminometer for the determination of trace metals in seawater using fluorescence, phosphorescence and chemiluminescence detection

    Get PDF
    The paper describes an integrated luminometer able to perform fluorescence (FL), room temperature phosphorescence (RTP) and chemiluminescence (CL) measurements on seawater samples. The technical details of the instrumentation are presented together with flow injection (FI) manifolds for the determination of cadmium and zinc (by FL), lead (RTP) and cobalt (CL). The analytical figures of merit are given for each manifold and results are presented for the determination of the four trace metals in seawater reference materials (NASS-5, SLEW-2) and Scheldt estuarine water samples

    Study on the effects of nitrilotriproprionic acid and 4,5-dihydroxy-1,3-benzene disulphonate on the fractionation of beryllium in human serum using graphite furnace atomic absorption spectrometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Occupational exposure to beryllium may cause Chronic Beryllium Disease (CBD), a lung disorder initiated by an electrostatic interaction with the MHC class II human leukocyte antigen (HLA). Molecular studies have found a significant correlation between the electrostatic potential at the HLA-DP surface and disease susceptibility. CBD can therefore be treated by chelation therapy. In this work, we studied the effect of two complexing agents, nitrilotriproprionic acid (NTP) and 4,5-dihydroxy-1,3-benzene disulphonate (Tiron), on the fractionation of beryllium in human serum analysed by graphite furnace atomic absorption spectrometry (GFAAS).</p> <p>Results</p> <p>We found the average serum beryllium concentration of fourteen non-exposed individuals to be 0.53 (± 0.14) μg l<sup>-1</sup>, with 21 (± 3)% of the beryllium mass bound to the low molecular weight fraction (LMW), and 79 (± 3)% bound to the high molecular weight fraction (HMW). The addition of Tiron increased the beryllium mass in the HMW fraction, while NTP was not seen to have any influence on the fractionation of beryllium between the two fractions. NTP was, however, shown to complex 94.5% of the Be mass in the LMW fraction. The beryllium GFAAS detection limit, calculated as three times the standard deviation of 10 replicates of the lowest standard (0.05 μg L<sup>-1</sup>), was 6.0 (± 0.2) ng L<sup>-1</sup>.</p> <p>Conclusion</p> <p>The concentration of beryllium or its fractionation in human serum was not affected by sex or smoking habit. On average, three quarters of the beryllium in serum were found in the HMW fraction. Of the two ligands tested, only Tiron was effective in mobilising beryllium under physiological conditions, thus increasing the Be content in the HMW fraction.</p

    Luminescence Sensors Applied to Water Analysis of Organic Pollutants—An Update

    Get PDF
    The development of chemical sensors for environmental analysis based on fluorescence, phosphorescence and chemiluminescence signals continues to be a dynamic topic within the sensor field. This review covers the fundamentals of this type of sensors, and an update on recent works devoted to quantifying organic pollutants in environmental waters, focusing on advances since about 2005. Among the wide variety of these contaminants, special attention has been paid polycyclic aromatic hydrocarbons, pesticides, explosives and emerging organic pollutants. The potential of coupling optical sensors with multivariate calibration methods in order to improve the selectivity is also discussed

    Recent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry

    Get PDF

    Heteroatom(isotope)-tagged genomics and proteomics

    No full text
    • …
    corecore