600 research outputs found

    Ignorance or intent? Motivations and predictive factors for the sending of unsolicited sexual images

    Get PDF
    A shift in mating behaviours caused by the inception of the internet has enabled new forms of sexual communication, in particular the exchange of graphic images. There is a fundamental lack of empirical research conducted on the origins of and motives for self- taken sexual images, both solicited and unsolicited. The incentives for the sending of such images are unknown, as well as the prevalence of the behaviour in general. Within the purposes of this research project I established the demographic context of sending nude images, identified people's main intentions and consequences, as well as the underlying psychological differences of those who send unrequested sexual images. In order to do so, I created a predictive model for the sending of unsolicited nude images, designed and validated a new scale for measuring attitudes towards sending nudes and provided evidence for gender-based differences when it comes to intentions and perceptions around the sending of self-taken sexual images. This research project provides evidence to suggest the sending of unsolicited graphic images is predicted by psychopathy, self-rated mate value and an accepting attitude towards sending nudes in men, whereas in women it is predicted by narcissism and a liberal attitude towards sending nudes. These gender differences have unique implications, both in terms of their potential to cause harm and regarding their perception by recipients, and should therefore be treated distinctly by governmental and educational institutions

    Digitalization of Battery Manufacturing: Current Status, Challenges, and Opportunities

    Get PDF
    As the world races to respond to the diverse and expanding demands for electrochemical energy storage solutions, lithium-ion batteries (LIBs) remain the most advanced technology in the battery ecosystem. Even as unprecedented demand for state-of-the-art batteries drives gigascale production around the world, there are increasing calls for next-generation batteries that are safer, more affordable, and energy-dense. These trends motivate the intense pursuit of battery manufacturing processes that are cost effective, scalable, and sustainable. The digital transformation of battery manufacturing plants can help meet these needs. This review provides a detailed discussion of the current and near-term developments for the digitalization of the battery cell manufacturing chain and presents future perspectives in this field. Current modelling approaches are reviewed, and a discussion is presented on how these elements can be combined with data acquisition instruments and communication protocols in a framework for building a digital twin of the battery manufacturing chain. The challenges and emerging techniques provided here is expected to give scientists and engineers from both industry and academia a guide toward more intelligent and interconnected battery manufacturing processes in the future

    Digitalization of Battery Manufacturing: Current Status, Challenges, and Opportunities

    Get PDF
    As the world races to respond to the diverse and expanding demands for electrochemical energy storage solutions, lithium-ion batteries (LIBs) remain the most advanced technology in the battery ecosystem. Even as unprecedented demand for state-of-the-art batteries drives gigascale production around the world, there are increasing calls for next-generation batteries that are safer, more affordable, and energy-dense. These trends motivate the intense pursuit of battery manufacturing processes that are cost effective, scalable, and sustainable. The digital transformation of battery manufacturing plants can help meet these needs. This review provides a detailed discussion of the current and near-term developments for the digitalization of the battery cell manufacturing chain and presents future perspectives in this field. Current modelling approaches are reviewed, and a discussion is presented on how these elements can be combined with data acquisition instruments and communication protocols in a framework for building a digital twin of the battery manufacturing chain. The challenges and emerging techniques provided here is expected to give scientists and engineers from both industry and academia a guide toward more intelligent and interconnected battery manufacturing processes in the future.publishedVersio

    Characterisation of adipocyte-derived extracellular vesicles released pre- and post-adipogenesis

    Get PDF
    Extracellular vesicles (EVs) are submicron vesicles released from many cell types, including adipocytes. EVs are implicated in the pathogenesis of obesity-driven cardiovascular disease, although the characteristics of adipocyte-derived EVs are not well described. We sought to define the characteristics of adipocyte-derived EVs before and after adipogenesis, hypothesising that adipogenesis would affect EV structure, molecular composition and function. Using 3T3-L1 cells, EVs were harvested at day 0 and day 15 of differentiation. EV and cell preparations were visualised by electron microscopy and EVs quantified by nanoparticle tracking analysis (NTA). EVs were then assessed for annexin V positivity using flow cytometry; lipid and phospholipid composition using 2D thin layer chromatography and gas chromatography; and vesicular protein content by an immuno-phenotyping assay. Pre-adipogenic cells are connected via a network of protrusions and EVs at both time points display classic EV morphology. EV concentration is elevated prior to adipogenesis, particularly in exosomes and small microvesicles. Parent cells contain higher proportions of phosphatidylserine (PS) and show higher annexin V binding. Both cells and EVs contain an increased proportion of arachidonic acid at day 0. PREF-1 was increased at day 0 whilst adiponectin was higher at day 15 indicating EV protein content reflects the stage of adipogenesis of the cell. Our data suggest that EV production is higher in cells before adipogenesis, particularly in vesicles <300 nm. Cells at this time point possess a greater proportion of PS (required for EV generation) whilst corresponding EVs are enriched in signalling fatty acids, such as arachidonic acid, and markers of adipogenesis, such as PREF-1 and PPARγ

    Hypoxic Environment and Paired Hierarchical 3D and 2D Models of Pediatric H3.3-Mutated Gliomas Recreate the Patient Tumor Complexity.

    Get PDF
    BACKGROUND:Pediatric high-grade gliomas (pHGGs) are facing a very dismal prognosis and representative pre-clinical models are needed for new treatment strategies. Here, we examined the relevance of collecting functional, genomic, and metabolomics data to validate patient-derived models in a hypoxic microenvironment. METHODS:From our biobank of pediatric brain tumor-derived models, we selected 11 pHGGs driven by the histone H3.3K28M mutation. We compared the features of four patient tumors to their paired cell lines and mouse xenografts using NGS (next generation sequencing), aCGH (array comparative genomic hybridization), RNA sequencing, WES (whole exome sequencing), immunocytochemistry, and HRMAS (high resolution magic angle spinning) spectroscopy. We developed a multicellular in vitro model of cell migration to mimic the brain hypoxic microenvironment. The live cell technology Incucyte© was used to assess drug responsiveness in variable oxygen conditions. RESULTS:The concurrent 2D and 3D cultures generated from the same tumor sample exhibited divergent but complementary features, recreating the patient intra-tumor complexity. Genomic and metabolomic data described the metabolic changes during pHGG progression and supported hypoxia as an important key to preserve the tumor metabolism in vitro and cell dissemination present in patients. The neurosphere features preserved tumor development and sensitivity to treatment. CONCLUSION:We proposed a novel multistep work for the development and validation of patient-derived models, considering the immature and differentiated content and the tumor microenvironment of pHGGs

    Rechargeable Batteries of the Future—The State of the Art from a BATTERY 2030+ Perspective

    Get PDF
    The development of new batteries has historically been achieved through discovery and development cycles based on the intuition of the researcher, followed by experimental trial and error—often helped along by serendipitous breakthroughs. Meanwhile, it is evident that new strategies are needed to master the ever-growing complexity in the development of battery systems, and to fast-track the transfer of findings from the laboratory into commercially viable products. This review gives an overview over the future needs and the current state-of-the art of five research pillars of the European Large-Scale Research Initiative BATTERY 2030+, namely 1) Battery Interface Genome in combination with a Materials Acceleration Platform (BIG-MAP), progress toward the development of 2) self-healing battery materials, and methods for operando, 3) sensing to monitor battery health. These subjects are complemented by an overview over current and up-coming strategies to optimize 4) manufacturability of batteries and efforts toward development of a circular battery economy through implementation of 5) recyclability aspects in the design of the battery

    Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis

    Get PDF
    Age is a significant risk factor for the development of cancer. However, the mechanisms that drive age-related increases in cancer remain poorly understood. To determine if senescent stromal cells influence tumorigenesis, we develop a mouse model that mimics the aged skin microenvironment. Using this model, here we find that senescent stromal cells are sufficient to drive localized increases in suppressive myeloid cells that contributed to tumour promotion. Further, we find that the stromal-derived senescence-associated secretory phenotype factor interleukin-6 orchestrates both increases in suppressive myeloid cells and their ability to inhibit anti-tumour T-cell responses. Significantly, in aged, cancer-free individuals, we find similar increases in immune cells that also localize near senescent stromal cells. This work provides evidence that the accumulation of senescent stromal cells is sufficient to establish a tumour-permissive, chronic inflammatory microenvironment that can shelter incipient tumour cells, thus allowing them to proliferate and progress unabated by the immune system
    corecore