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1. Introduction

With the advent of electromobility, the market for electric 
vehicle (EV) batteries has seen consistently high growth rates 
over the past few years, and it is expected to grow further, as 
it is forecasted by BloombergNEF, which stated that EVs will 
represent 70 percent of all passenger vehicles by 2040.[1] At the 
same time, the share of renewable energy sources in the electric 

As the world races to respond to the diverse and expanding demands for elec-
trochemical energy storage solutions, lithium-ion batteries (LIBs) remain the 
most advanced technology in the battery ecosystem. Even as unprecedented 
demand for state-of-the-art batteries drives gigascale production around the 
world, there are increasing calls for next-generation batteries that are safer, 
more affordable, and energy-dense. These trends motivate the intense pursuit 
of battery manufacturing processes that are cost effective, scalable, and sustain-
able. The digital transformation of battery manufacturing plants can help meet 
these needs. This review provides a detailed discussion of the current and near-
term developments for the digitalization of the battery cell manufacturing chain 
and presents future perspectives in this field. Current modelling approaches 
are reviewed, and a discussion is presented on how these elements can be 
combined with data acquisition instruments and communication protocols in 
a framework for building a digital twin of the battery manufacturing chain. The 
challenges and emerging techniques provided here is expected to give scientists 
and engineers from both industry and academia a guide toward more intelligent 
and interconnected battery manufacturing processes in the future.
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grid are growing, and by 2025 the installed 
capacity of wind and solar will exceed that 
of coal, natural gas, and hydropower.[2] 
The need for grid-scale energy storage 
to buffer supply from these intermittent 
sources is motivating the development 
of “mega-batteries” powering regional 
electric grids. Regardless of the applica-
tion, cost-efficient, high-performance and 
sustainable batteries are essential to meet 
these demands and to maintain the com-
petitiveness and guarantee the economic 
viability of these applications (i.e., EVs and 
grid-scale storage).

Today, lithium-ion batteries (LIBs) 
are the dominant battery technology and 
have been widely deployed in portable 
electronics, EVs, and grid storage due 
to their enhanced features, such as high 
energy density, high power density, and 
long cycle life.[3] Despite this dominance, 
LIB technology undergoes continuous 
development to meet the tightening cost 

and performance requirements from industry. These efforts 
employ several strategies across the battery value chain, tar-
geting improved materials, cell designs, operational controls, 
manufacturing processes, and recycling. On one hand, the 
research on LIB materials has scored tremendous achieve-
ments and many innovative materials have been adopted by 
the industry.[4–8] On the other, the LIB technology does have 
some fundamental limitations for which alternative battery 
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technologies beyond the LIBs are also in development.[9] In any 
case, to meet battery performance, cost and sustainability tar-
gets, several improvements on both materials and cell manu-
facturing are needed. The latter, the research on LIB manufac-
turing process, has received less attention[10–12] and this leaves 
a potential opportunity to improve the cell manufacturing pro-
cess, making it more efficient, more cost effective, and more 
sustainable.

Furthermore, economies of scales[13,14] enables to reduce bat-
tery manufacturing costs, and to gain an advantage over the 
competition. Although the gigascale production of LIBs has 
succeeded in reducing costs, they present a variety of chal-
lenges for maintaining operational and quality standards. In 
addition to the logistical challenges that involves moving such 
vast amounts of material in a reliable way, it is well-established 
that LIB cell performance (i.e., energy density and cycle-life) is 
sensitive to variations in the manufacturing process. Thus, due 
to numerous consecutive process steps that make up the battery 
manufacturing chain and the interaction of these steps and the 
high number of individual process parameters, an optimization 
going beyond traditional trial-and-error approach is crucially 
needed. And here is where digitalization-based automation can 
play a capital role.[15,16] Virtual replicas of the actual manufac-
turing process can help to shorten time-to-market, leading to 
a greater profitability by reducing expenses for cell prototyping 
and optimization. Even more, virtual developments can reduce 
the expense of redesigns and tool changes for problems found 
during pre-series launch. Eventually, virtual prototyping may 
completely replace physical prototyping and it is expected that 
digitalized gigafactory operations can optimize their produc-
tion in real time, improving productivity, product reliability and 
quality. In this way, gigascale battery cell production also needs 
to be occurring within the background of the wider ongoing 
shift toward the so-called Industry 4.0 paradigm. This pro-
vides excellent opportunities for the adoption of digitalization 
to address the challenges of gigascale battery cell production, 
not only because it can effectively manage the production logis-
tics (production and distribution efficiency, time-management, 
energy usage, etc.), but also it can assess and optimize the 
properties of the resulting battery cells.[17–21]

The process of digitalization, which has been demonstrated 
with success across many fields,[22–24] is characterized by the 
transfer of analogue product features into digital values, to 
enable an electronical and informational transfer, storage, 
and processing of the data.[25] Despite some of the goals for 
digitalization of the battery manufacturing process are quite 
ambitious, the hope is that it can evolve into automated 
decision-making, near perfect mechanical automation and 
symbiotic human integration, leading to battery manufacturing 
facilities that will be completely interconnected and “smart”, 
from raw materials to finished battery cells.

In this review, we first evaluate the current developments 
and those that are being developing in the framework of the 
digitalization of LIB manufacturing processes. Then, we sum-
marize the challenges and opportunities of the implementation 
of these new technologies. And, finally, we provide a summary 
of future trends on battery manufacturing processes evolving 
new manufacturing processes and new battery chemistries. 
Thus, this manuscript highlights the challenges that still need 

to be overcome toward the digital transformation of the cur-
rent LIB manufacturing chain, with the ultimate goal to solve 
some key issues of LIB manufacturing, but keeping an eye 
on emerging technologies and disruptive manufacturing pro-
cesses, which may eventually result in increasing the produc-
tion efficiency and lowering the cost and energy consumption 
of the batteries.

2. Current and Near-Future Developments 
in Digitalization of the LIBs Manufacturing 
Processes

The battery community continues to make strides toward 
Industry 4.0 with the aim to achieve smart manufacturing pro-
cesses with greater intelligence, sustainability, and customi-
zation. This approach facilitates the interaction, integration, 
and fusion between the physical and cyber worlds of manu-
facturing.[26] Digital Twins (DTs) are attracting growing atten-
tion from academic researchers, as well as industrial players in 
recent years, as a promising means to achieve the cyber-phys-
ical fusion of both manufacturing processes and products.[27–30] 
Through high-fidelity modelling, real-time interaction and data 
fusion, DTs can reproduce a physical asset or process accurately 
in the digital world and enable more effective monitoring, opti-
mization, and prediction of the physical counterpart through its 
lifecycle.[31–34]

Inspired in the work of Bazaz,[35] which presented a five-layer 
digital model to replicate the physical object as a virtual object 
and to collect and convert data within a manufacturing plant, 
the present paper considers hypothetical three-layer DTs that 
will enable covering all requirements to represent the physical 
space in the virtual space. The proposed 3-layer structure of the 
DT of the gigascale LIB manufacturing,[36] which includes the 
main steps of 1) electrode preparation, 2) cell assembly and 3) 
activation by formation steps, is depicted in Figure 1.

1) Digital manufacturing framework layer contains data collected 
from the physical manufacturing plant and deals with the 
communication network. The communication between a DT 
and its counterpart in the physical space relies on bi-direc-
tional and real-time data sharing. This framework collects 
data in real time through cost-effective sensors and stores the 
data in a Cloud space to promote the remote management of 
the plant.

2) Models’ layer describes, provides understanding, and predicts 
the twin’s operation. For this evaluation, we draw a distinc-
tion between process and machine models. Process models 
are used to describe the relationship between the process and 
structural parameters, while machine models refer to repre-
sentation of machines and equipment in the manufacturing 
process chain. In any case, coupling of models across scales 
is required in the digital twin to analyze the interactions be-
tween machining processes and related machine tools.

3) Standards layer: the full digital twin vision requires interop-
erable digital twin definitions and tools. Considerations for 
digital twin, cybersecurity and interoperability take place in 
this layer.
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Within this Section, we analyze the current developments 
and those foreseen in a near-future, in the field of digitalization 
of the LIB cell manufacturing, with special emphasis in each of 
the layers presented in Figure 1. The enabling technologies and 
related tools are also discussed in detail.

2.1. Digital Manufacturing Framework

The digital manufacturing framework consists of a smart digital 
infrastructure[37] that deals with the communication network 
and data processing methods. The communication network 
is one of the critical factors for enabling the establishment of 
DTs. State synchronization between a DT and its counterpart in 
the physical space relies on bi-directional and real-time flow of 
data.[38] In parallel, sensors are integrated to measure different 
relevant quantities along the whole manufacturing process, and 
to generate data that can be stored in a central data warehouse 
to allow for post-processing of historical information to support 
process optimization or root cause analysis.

2.1.1. Data Acquisition

Data acquisition represents a crucial aspect of the digitiza-
tion of production environments.[39] In the field of battery cell 
manufacturing process, this consists of sequential steps with 
many interdependencies.[40] A large quantity of data reflecting 
both the processes and equipment must be collected to guar-
antee the monitoring of the battery cells, ensuring required 
quality control, sustainability and cost efficiency. The work 
developed by Huber et al.[41] goes toward this direction and 
presents a method for the automated classification of battery 
separator defects based on the data recorded by a machine 
vision system.

Data acquisition can be performed manually or through 
automated workflows. During manual data acquisition, the 
user uploads data (offline product analytics, production plans, 
etc.) through for example a web-based user interface. However, 
manual data acquisition is often too slow and cumbersome to 
support highly efficient processing. Instead, automated data 
collection can supply information as soon as it is available and 
enable workers to promptly intervene on unplanned produc-
tion downtime, and even take conscious decisions on what to 
improve. An example of the automatization data extraction in 
battery manufacturing is the approach described by Thiede 
et al.[42] that considers over 500 changeable process parameters 
(e.g., line speed of coating/drying or calendering), and resulting 
state variables (e.g., power demand), 1029 intermediate product 
features (e.g., average particle diameter, conductivity, and tortu-
osity), as well as 65 final product properties (e.g., capacity and 
inner resistance). In this case, industrial data acquisition sys-
tems like the Supervisory Control and Data Acquisition system 
(SCADA) or Manufacturing Execution System (MES) were 
used. The data was extracted and transformed into a form that 
was stored and further processed in a data warehouse.

Contrarily to a database, which only stores the data, the main 
function of a data warehouse is to gather, merge and store the 
data in the way that it would be accessible for further usage. 
Turetskyy et al.[43] outlined a holistic approach to represent the 
entire production cycle of battery cell manufacturing in a data-
driven manner. Furthermore, the authors described the com-
bination of automated and manual data acquisition, as well as 
merging of data from different sources, of different communi-
cational protocols, and of different formats toward accessibility, 
convenient data management, and visualization.

In this landscape, the demand of intelligent sensors and 
sensor systems as the key enabler of enhanced flexibility, 
adaptability, configurability, and agility in manufacturing pro-
cesses has been fully recognized, and also confirmed in other 

Figure 1. Overview of the 3-layer structure for the proposed Digital Twin of the LIB manufacturing chain.
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fields.[44,45] Sensors (e.g., inductive proximity sensors, optical 
sensors and laser sensors) can provide the actual status of the 
production phase. However, to the best of the authors’ knowl-
edge, in the battery manufacturing field the use of this kind 
of sensors and their interaction with their environment, is 
currently mostly limited to safety functions, defect detection, 
automatic calibration of workpieces or simple measurement 
methods. Various types of sensors are already used in battery 
cell manufacturing processes to monitor quality. For example, 
the coating thickness can be measured at various points in pro-
duction using appropriate sensors, such as a laser triangulation 
or inductive measurement.[46] Similarly, in the separation and 
stack formation steps, camera-based measurement methods 
are used to measure positioning accuracy.[47,48] However, this 
could be insufficient, especially for stack assembly, because the 
position and three-dimensional shape of the individual sheets 
can change during the stacking process, as well as, during fur-
ther processing of the stack.

Furthermore, during calendering step, the force on the 
rollers can be measured as described by Meyer et al.,[49] and 
in handling tasks with negative pressure, such as stacking, 
parameters such as the pressure and the air flow rate can be 
measured as shown in several works.[50,51]

2.1.2. Interoperability and Communication Protocols

Enabling interconnectivity across a diverse set of devices is 
one of the main requirements to achieve the vision of Industry 
4.0.[52] This must be supported by large amounts of data that 
can be used to inform production decisions.[53] However, one 
of the main challenges in implementing this solution is estab-
lishing interoperability of data among devices. This challenge 
can be overcome through the acceptance of relevant stand-
ards for the exchange of models and cyber-physical assets[54] as 
well as the development of dedicated data tools for the battery 
domain.

The Functional Mock-up Interface (FMI)[55] standard has 
become a preferred approach to support the exchange and 
co-simulation of models describing the overall behavior of 
complex systems. The FMI is a free standard that defines a 
container and an interface to exchange dynamic models using 
a combination of XML files, binaries, and C code zipped into 
a single file. FMI was developed with the intention to simplify 
the creation, storage, exchange, and reuse of dynamic system 
models of different simulation systems for cyber physical sys-
tems, among other applications. Today, FMI is applied for two 
main purposes: model exchange and co-simulation.

The model is encapsulated as package called a Functional 
Mock-up Unit (FMU), which describes the model as a system 
of differential, algebraic and discrete equations with time-, 
state- and step-events. The FMU can then be distributed as a 
single zip file.

The definition of standardized FMUs also enables a relatively 
new simulation paradigm called co-simulation, which targets 
the joint simulation of loosely coupled stand-alone sub-simu-
lators. In a co-simulation system, the sub-simulators are solved 
independently of each other, with the exchange of data limited 
to discrete communication points. Each sub-simulator accepts 

inputs from other sub-simulators, use a built-in solver routine 
to advance to the next time step, and output some results. The 
co-simulation algorithm coordinates the time synchroniza-
tion and interactions across the sub-simulators. This black-box 
approach can also allow developers to share their models, while 
also protecting their knowledge and associated intellectual 
property rights (IPR).

FMI has been applied to simulate complex physical systems, 
including multifunctional production engineering applica-
tions.[56] First steps have also been taken toward implementing 
FMI standards for model co-simulation in a multi-scale core 
model for battery cell production, such as the model described 
by Schönemann et al..[57,58] This approach, shown in Figure 2, 
proposes a method to analyze LIB production systems based 
on coupled simulation models, with a focus on the interac-
tions between production units, processes, machines, technical 
building services, and the building structure. In a case of study 
for battery electrode production, the method is applied to eval-
uate the influences of different process configurations on inter-
mediate product characteristics and seasonal effects of energy 
demand. The case study also investigated how different process 
routes and parameters in electrode production affect the char-
acteristics of battery slurries and coated electrode metal foils.

To enable this interoperability, standardized interfaces, and 
protocols for communication between systems are required. 
The communication needs of a DT can be divided into the fol-
lowing categories:1) communication between the subsystems 
of a digital twin and 2) communication between a digital twin 
and its corresponding physical counterpart. For models, the 
utilization of FMI/FMU standards is a significant development 
to support the model exchange and co-simulation. However, 
physical assets that should be incorporated into a digital world 
of information also require similar standardized interfaces to 
allow for the implementation of DTs and to ensure cross-plat-
form interoperability. This is the purpose of the Asset Admin-
istration Shell.

Within the Industry 4.0 paradigm, an asset is defined as 
anything that requires a connection to the network. The Asset 
Administration Shell (AAS)[59–61] is a standardized and secure 
communication interface designed to integrate an asset into 
a network. It provides an asset with an unambiguous identity 
such that it can be addressed on the network and regulates 
access to information about the asset. The AAS forms the dig-
ital basis for autonomous systems and AI, and it enables the 
implementation of digital twins. The AAS comprises a variety 
of submodels, which describe all the information and function-
alities of a given asset. This includes information like the fea-
tures, characteristics, properties, status, parameters, measure-
ment data, and capabilities of an asset. For developers, a free 
open-source tool called the AASX Package Editor is available 
to create and edit Asset Administration Shells for a given use 
case in XML and JSON formats. The AASX Explorer can be 
downloaded as compiled software licensed under Eclipse Public 
License 2.0 (EPL 2.0).

The Open Platform Communications Unified Architecture 
(OPC UA),[62] created by OPC Foundation, is another example 
of standardized communication protocols. The OPC UA 
defines a set of common data description and syntax expres-
sion methods; that is, each heterogeneous control system can 
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use OPC UA specification to describe its own information, and 
then through OPC server/client mode, the third-party system 
can obtain the data of a heterogeneous control system.[63] With 
respect to the implementation of OPC UA in LIB manufac-
turing, Han et al.[64] established an information model of the 
intelligent manufacturing based on the analysis of the archi-
tecture, functional categories, and information interaction of 
the intelligent manufacturing workshop. The approach for 
implementing data storage and interaction of the information 
model based on the OPC UA server/client was also discussed. 
The information model was applied to realize the intercon-
nection and interoperability of production management data, 
material management data, equipment management data, and 
quality management data among various levels of the work-
shop, which verified the feasibility of the proposed information 
model.

In the area of cross-machine information models, as a basis 
for the corresponding data-based applications, there are already 
numerous generic machine models based on OPC UA, which 
underline the necessity of merging proprietary information 
models, but require manual identification and linking of the 
parameters.[65,66] The universal machine technology interface 
(UMaTI)[67] standardization initiative represents a step in the 
right direction in this respect, but only covers a fraction of the 
relevant parameters and does not offer a solution for a large 
proportion of existing plants and for high-frequency data. With 
UMaTI, an OPC UA Companion Specification is derived on 
the basis of certain defined use cases, with the aim of gener-
ating a suitable information model as a standardized interface 
that already exists for machine tools within the framework of 
a restricted parameter space. There are plans to extend the 

parameter space, but no significant efforts exist yet with regard 
to battery cell manufacturing equipment’s. Another example 
of interface standardization is Packaging Machine Language 
(PackML),[68] but to the authors' knowledge it has not yet been 
applied in battery manufacturing field.

Cyber-physical production systems enable an interaction 
between the physical components and the virtual data layer of a 
production system, by considering the corresponding technolo-
gies for data acquisition, data storage, and data processing in an 
integrated manner.[69,70] A standardized information model for 
battery cell production plants still needs to be developed, so that 
existing models can be applied flexibly and with little effort to 
real battery cell manufacturing plants.

The need to exchange data across the battery value chain is 
driving a push for a common Battery Identity Global Passport 
(BIGP),[71] supported by the Global Battery Alliance (GBA). The 
proposal calls for the BIGP to be a digital asset that accompa-
nies the battery throughout its lifetime, all the way from manu-
facturing to recycling. The BIGP should contain descriptions of 
the key technical data, including battery chemistry and origin, 
as well as data related to the operational history of the battery 
such as state of health and chain of custody. This information 
will be helpful for second-life users who want to evaluate the 
suitability of a specific battery for their application or recyclers 
who want to direct cells to the appropriate recycling process, 
based on their chemistry.

The vision of digitalized battery manufacturing ultimately 
requires some common machine-readable language for 
describing battery data, based on a common conceptualiza-
tion shared by the community. Ontologies are a tool ideally 
suited to meet this need, and efforts by the battery research and 

Figure 2. Schematic of a unifying multi-scale core model. Reproduced with permission.[58] Copyright 2021, Springer Nature.
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development community to develop fully open battery cell and 
manufacturing ontologies are underway.

2.1.3. Ontologies for Battery Manufacturing

An ontology is a data model that encompasses the knowl-
edge about a topic or domain. It describes a domain as a set 
of concepts and the relationships between them, and provides 
a common standardization platform for exchange of data and 
information processing by humans and machines.[72] Once 
established in an electronically readable form, the ontology 
provides a formal categorization scheme to facilitate digitaliza-
tion of industrial technologies and support the integration of 
Artificial Intelligence (AI) and Big Data approaches. The uses 
of ontologies in the digitalization of battery manufacturing 
mainly include: (i) Defining a standard vocabulary for battery 
classes and properties to support consistency in digital assets, 
(ii) Facilitating the development of co-simulation frameworks 
by defining reason-based interfaces between sub-models;[73] 
and (iii) Accelerating AI optimization by allowing machine rea-
soning over large datasets.

Manufacturing is one application area that is embracing the 
adoption of ontologies for both sharing data between computer-
ized tools and establishing a standard vocabulary for efficient 
communication.[74] Modern manufacturing is generally reliant 
on global supply chains, which may include subcontracting, dis-
tribution of industrial processes, and collaboration both inter-
nally and externally. In the digital age, all these activities must 
be coordinated by information systems, which may themselves 
include interfaces to many different software systems. To add 
an additional layer to the challenge, software and hardware are 
constantly changing, thus requiring any unifying framework to 
constantly adapt. Therefore, achieving reliable interoperability 
of data and software that is resilient to a changing technological 
environment is essential to the success of manufacturing enter-
prises today.

Industry 4.0 takes this one step further and envisions fully 
automated manufacturing environments in which Cyber-
Physical Production Systems (CPPS) continuously exchange 
data among each other, and autonomously adapt themselves 
to a given task. Ontologies fulfil a unifying role by providing a 
common, logically consistent vocabulary for describing knowl-
edge in the domain and guiding the development of associated 
software. However, the successful integration of ontologies into 
real applications is difficult due to the challenge of developing 
and maintaining ontologies that are correctly built on estab-
lished standards, well-documented, and maintained beyond the 
initial development period. Successful ontologies must stem 
from a robust and globally relevant top-level ontology that pro-
vides reusable modules for shared terminology, definitions, and 
formalizations. Such a top-level ontology serves as a common 
basis for derived domain ontologies to describe specific pro-
cesses or software applications.

To date, there has been relatively little development of ontol-
ogies dedicated to batteries and battery manufacturing. There 
are currently two coupled ontologies in development to meet 
this need: the Battery Interface Ontology (BattINFO)[75] and 
the Battery Value Chain Ontology (BVCO).[76] BattINFO is 

designed to cover all knowledge related to the battery cell itself. 
This includes descriptions of electrochemistry, battery proper-
ties, characterization, observation, and modelling. BattINFO is 
developed through the European Union project BIG-MAP with 
the immediate goal of supporting AI-driven discovery of new 
battery materials. The BVCO describes the processes, materials, 
and equipment used in the value chain related to battery manu-
facturing and recycling. BVCO imports BattINFO to provide a 
single consistent description of a battery cell, and supplements 
it with knowledge related to battery materials mining and pro-
cessing, the battery manufacturing process steps, as well as 
battery second life and recycling processes. Both BattINFO 
and BVCO use the top-level European Materials and Modelling 
Ontology (EMMO), which allows them to integrate with other 
domain ontologies stemming from EMMO. More information 
on ontologies for battery development, BattINFO, and BVCO is 
available in a dedicated review paper.[77]

2.1.4. Digitalization Frameworks and APIs

Initiatives for the development of multi-scale frameworks and 
application programming interfaces (APIs) for battery digi-
talization are currently the focus of intense interest from both 
industry and academia. A variety of approaches are in devel-
opment to address the challenges of storing, processing, and 
utilizing large volumes of heterogeneous battery data. Some 
common aspects include battery data collection, storage, pro-
cessing, and integration into model-based workflows.

Frameworks for the digitalization of battery manufacturing 
and data management are in development by both diversified 
engineering companies,[78] as well as start-ups. Recent commer-
cial solutions for battery data management and analytics have 
been developed by battery technology companies and research 
spin-offs like, Voltaiq,[79] Energsoft,[80] Astrolabe Analytics,[81] 
and Batalyse.[82]

Typical commercial solutions focus on implementing work-
flows to gather battery data from different characterization 
equipment, which may have different standards and formats 
for storing data depending on the manufacturer. This data is 
then parsed and stored into a semantic query language (SQL), 
or similar database to support semantic querying of large 
datasets. Featurizers are often included to extract out relevant 
indicators of battery performance from the dataset and may be 
combined with ML-driven analytics or physics-based models.

The research battery data community is creating similar 
frameworks to support digitalization of battery discovery, 
design, and development. This has resulted in a collection of 
loosely complimentary software to address different challenges 
in the field. These include examples such as Kadi4Mat, Galvan-
alyser, BEEP, PyBaMM, and the Battery Archive.

Kadi4Mat[83] is developed by the Karlsruhe Institute of Tech-
nology (KIT) to support the easy access, exchange, and interoper-
ability of materials data. Kadi4Mat is a web-based application that 
combines the features of an electronic laboratory notebook (ELN) 
and data repository. The web-based node editor enables users to 
define simple workflows that can be executed locally. The infra-
structure, shown in Figure 3, includes tools to upload, manage 
and exchange data, set flexible metadata schemes, and establish 
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automated workflows. Although ostensibly geared toward the 
field of material science, the development of Kadi4Mat is sup-
ported by some of the leading German projects and clusters on 
battery research including FestBatt[84] and POLiS.[85] Kadi4Mat is 
open-source software, currently available for download and use 
in the community under Apache License 2.0.

Galvanalyser is a database solution for battery test data, 
which collects raw data from a variety of sources, parses it into 
a common format, and stores the data in a single PostgreSQL 
database.[87] Developed by researchers at Oxford University, Gal-
vanalyser streamlines the process of gathering and querying 
data from different testing equipment. It supports access to the 
data through a web-based interface, which allows the user to 
search for datasets with certain properties and visualize them 
within the app. Open-source Python packages, like the battery 
evaluation and early prediction software package (BEEP)[88] and 
Python battery mathematical modelling (PyBaMM)[89] offer 
additional functionalities. BEEP is a framework for the man-
agement and processing of high-throughput battery cycling 
data, while PyBaMM is designed to allow for the simulation of 
cycling protocols in silico. While these packages offer solutions 
for developers interested in generating, managing, and model-
ling their own data, the Battery Archive[90] project run by the 
United States of America Department of Energy (DOE) com-
piles data and metadata from across many different studies to 
support model-based battery degradation predictions.

The digitalization of battery manufacturing benefits from 
the accelerating growth of battery manufacturing APIs. For 
example, the ERC-funded ARTISTIC project[91] develops a pre-
dictive computational platform of the impact of manufacturing 
parameters on the electrodes 3D texture and electrochemical 
performance. Such a platform encompasses physics-based and 
ML models describing each step of the manufacturing process 
(slurry, coating, drying, calendering, electrolyte filling, forma-
tion, electrochemical performance). The ARTISTIC project 
offers free online services to launch manufacturing simula-
tions from an Internet browser.[92,93] Other example is the 

DEFACTO project,[94] whose target is to create a basis for the 
digitalization of the battery manufacturing process, by devel-
oping multiphysics and multiscale modelling tools to improve 
the understanding of cell material behaviour and cell manufac-
turing process, and their impact on battery cell ageing. A fur-
ther example of a commercial tool that stochastically generates 
electrode mesostructures is the software GeoDict.[95] A freeware 
alternative called INNOV is also available, which allows users to 
generate battery electrodes by controlling for example the shape 
of carbon-binder domain partially covering the surface of active 
material particles.[96–98]

2.2. Models

The second layer in the proposed DT structure presented in 
Figure 1 is related to models, which is defined as a representa-
tion of a system, through which relevant attributes are captured 
and is used to describe, understand, and predict the twin’s oper-
ational states and behaviors. This paper differentiates between 
models describing machines and processes, following the cri-
teria laid out in Ref. [58] Machine models are mostly focused on 
the representation of shop-floor elements (e.g., machines and 
equipment) through the modeling of mechanical, electrical, 
and hydraulic functions, while process models simulate the per-
formance of an asset describing the creation and transforma-
tion of product characteristics. In any case, coupling of models 
across scales is required in the DT to analyze the interactions 
between machine processes and related machine tools, and 
later developed a virtual replica of the physical manufacturing 
chain. In this multi-level simulation, the different levels (bat-
tery cell, machine, and process chain) need to be addressed 
individually with a suitable modelling approach, based on 
physics-based mechanistic models and/or data-driven models 
where Machine Learning (ML) algorithms are implemented.

In general, the behavior and operation of each machine 
within the battery cell manufacturing process chain needs 
to be described by machine models. These models aim (1) to 
model machine operation over time according to the schedule 
provided by the process chain model; (2) to describe machine 
states of entire machines; (3) to provide demand profiles for 
energy carriers and resulting heat emissions, and finally (4) to 
model machine failure behavior.

When it comes to the process models, numerous factors 
during battery cell production influence the performance 
and quality of final cells; even product specifications of cells 
influence the operation of machines and process chains also 
affecting other production system element. Simulating these 
influences requires process models for describing the specifica-
tions and characteristics of processing units during production, 
as well as models for processes describing the creation and 
modification of product characteristics.

In the current LIB cell manufacturing processes, the elec-
trode mesostructure (see Figure  4), defined as the way that 
the active material (AM), carbon additive and binder are dis-
tributed in the space and interfaces between them within an 
electrode, strongly controls the practical properties of the elec-
trode and those of the cell, such as energy and power densities, 
lifetime and safety. Therefore, electrodes are the most complex 

Figure 3. Conceptual overview of the infrastructure of Kadi4Mat. The 
system is logically divided into the two components ELN and repository, 
which have access to various data handling tools and technical infrastruc-
tures. The two components can be used both graphically and program-
matically via uniform interfaces.[86]
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components to manufacture in LIB cells and its fabrication pro-
cess specially requires models capable of mimic the real man-
ufacturing process to avoid the current time-consuming and 
costly trial-error approach.

Basically, three types of models have been developed and 
applied so far to predict electrode properties as function of a 
number of manufacturing parameters: stochastic models, 
physics-based models and data-driven models, i.e., ML models 
(see Figure  5). While the stochastic methods have been used 
from at least in the last 20 years in other electrochemical sys-
tems (e.g., solid oxide fuel cells),[99–101] application of physics-
based and ML models to battery manufacturing is just 
emerging.[21,102,103] Because of their empirical character, sto-
chastic models are the ones having the lowest computational 
cost, and the lowest prediction capability (since the electrode 
mesostructure generation forces the resulting mesostructure 
to match the experimental observables, such as the porosity). 
Physics-based models, depending on the number of spatial car-
tesian coordinates considered can have different computational 
cost and prediction capabilities: 3D models,[21] for example, 

have the highest computational cost (usually several hours or 
days, depending on the hardware computational resources), 
and at the same time provide the highest prediction accura-
cies, while 2D, 1D and 0D models have lower computational 
cost, but also lower prediction capabilities. Finally, ML models 
usually need long times for their training from large data sets, 
although once they are properly trained, they can provide high 
accuracy predictions with ultralow computational cost (few sec-
onds). Hereafter, the working principles of these three types 
of approaches and application examples in relation to battery 
manufacturing will be discussed.

2.2.1. Stochastic Models of Electrode Mesostructures Generation

When it comes to the study of LIB electrodes in three dimen-
sions, the most intuitive approach to model their mesostructure 
is to assume particles as having polyhedral or spherical shape, 
and to artificially build an electrode by randomly (stochastically) 
packing them into a given volume, until reaching an experi-
mental porosity or volume fraction (see Figure  6).[104–106] Usu-
ally, this process is repeated several times for different random 
seeds and the average mesostructure is retained.

A variation of this approach is the ballistic method, which 
has been proposed to be used for generating virtual electrodes 
and to estimate relevant structural and transport properties.[107] 
Overall, these approaches do not predict how the actual manu-
facturing parameters impact the electrode mesostructure, but 
they provide insights on how the mesostructure impact practical 
properties, such as the effective conductivities resulting from 
the particles percolation and the tortuosity factors. These effec-
tive outputs can be used as inputs of electrochemical models of 
LIB cells, such as the Newman’s pseudo-2D approach.[108]

The stochastic approach finds also useful applications for 
all solid-state batteries.[109–112] Bielefeld et al.[113] studied the 
impact of carbon-free composite electrode formulation (active 
material/electrolyte ratio), porosity, particle size and electrode 
thickness on the formation of ionic and electronic percola-
tion networks. Later, the same authors extended their work by 
incorporating binder in their analysis, studying the impact of 
binder content, active material particle size and porosity on the 

Figure 4. Representation of the LIB electrode microstructure which 
is generally constituted of active material (AM), conductive additives 
(named “Carbon” in the figure) and binder.

Figure 5. Different modeling approaches generate electrode mesostructures. Stochastic approach (left image) allows generation of electrode meso-
structures by using as inputs experimental particle size distributions, formulation and porosity; mechanistic model, such as DEM (middle image), 
predicting electrode mesostructures as function of the manufacturing process parameters (e.g., formulation, drying temperature of the slurry, calen-
dering pressure); ML approach (right image) for predicting the influence of manufacturing parameters on electrode mesostructure and performance 
properties.
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effective ionic conductivity and tortuosity.[114] They found that 
the binder, even if added in small amounts, negatively impacts 
the ion transport paths and the active surface area available for 
lithium insertion.

2.2.2. Physics-Based Models of the Manufacturing Process

In the first step of the electrode processing, an electrode slurry 
is obtained. Formed by a suspension of active material, carbon 
particles, binder and eventually dispersants in a solvent, with 
certain density, viscosity and stability that depend on the mate-
rials chemistry and the resulting complex interplays between 
van der Waals, Brownian and electrostatic forces, steric and 
hydrodynamic interactions.[21] Algebraic (or 0D) models for 
slurries have been proposed for estimating the viscosity of 
electrode slurries that incorporates colloidal forces such as 
van der Waals and polymeric steric repulsion forces.[115] Such 
kind of models can be very useful for fast understanding of 
the rheological properties of the slurries. Still, their empirical 
character does not allow creating truly 3D-resolved models 
accounting also for solvent evaporation, calendering and fur-
ther manufacturing steps. Discrete particle approaches, such as 
atomistically-resolved approaches, could in theory provide this 
“understanding”. However, in view of the wide diversity of sizes 
of materials involved in a slurry (∼ µm for the active material, 
∼ tens of nm for the carbon additive, ∼ few nm for a binder 
monomer) and consequently the millions of atoms involved, 
a fully atomistic-resolved approach simulating the interaction 
forces between them would have prohibitive computational cost 
and would be impractical for predicting slurry properties (e.g., 
rheology) in an appropriate way. Therefore, coarse-graining 
approaches, representing the particles suspensions and slurries 
through a collection of effective “beads” instead of atoms, have 
been used to investigate particle, polymer suspensions and 
slurries, in general.

Monte Carlo (MC) and kinetic Monte Carlo (kMC) methods 
can be used as that kind of coarse-graining approaches. MC 
methods were originally developed in the 1940s-1950s by 
Metropolis et al.[116,117] and since then they have become widely 
used for studying the statistical properties of discrete systems, 
allowing to close the gap between atomistic and continuum 
approaches. They are based on the extensive repetition of 
random executions to obtain results mimicking physical sys-
tems where the random character is inherent. Several MC 

techniques have been developed, the most popular is the 
Metropolis algorithm consisting of performing random swaps 
from a given arrangement, e.g., spatial distribution of parti-
cles constituting a system, in order to search for the minimal 
energy configuration.[118–120] kMC methods are MC methods 
used to study the (temporal) evolution of systems.[121] While 
the primary outcome is the prediction of the time evolution, 
thermodynamic averages can also be obtained under equilib-
rium conditions. A kMC simulation relies on a set of discrete 
configurations and an a priori knowledge of a set of transition 
rate constants characterizing the transition events between 
these configurations. The states can be, for example, different 
arrangements of particles in a system and the events imple-
mented as jumps of individual particles between positions. 
The events are assumed to obey “Poisson statistics”, which is a 
statistical representation of random, uncoordinated rare-event 
(rate-limited) processes, also known as Markov processes. In 
this line, LiFePO4-based electrode slurries and their drying 
have been simulated using an approach combining MC and 
kMC.[122,123] The approach optimizes the spatial arrangements 
of beads representing active material, carbon, binder, solvent, 
and pores (the latter in the case of solvent evaporation) based 
on energy calculations. It assumes a bi-dimensional system 
(in plane), that is, it does not describe the re-arrangement pro-
cesses happening in the depth of the slurry upon solvent evapo-
ration. Still, despite these geometrical approximations (e.g., 
active material particles represented like squares) the approach 
permits understand how solvent evaporation impact porosity 
evolution upon the slurry drying and allows studying the 
impact of mixing order on electrode mesostructure formation.

Brownian Dynamics (BD) method has been used to describe 
particles suspensions used for describing LIB electrode slur-
ries, such as carbon additive, LMNO and silicon.[124–127] BD 
simulates the trajectory of interacting particles through empiri-
cally parameterized conservative forces, by solving a simpli-
fied version of the Langevin dynamics equation (usually used 
to describe Brownian motion), where no average acceleration 
takes place.[128] Publications reporting BD models to describe 
slurry particle suspensions have analyzed the effect of tem-
perature, mass ratio between carbon and active materials on 
the resulting number of contacts between the conductive addi-
tive and the active material in the suspensions. However, these 
works have not addressed the presence of binder and do not 
account for very high solid-to-liquid ratios that one finds in 
actual slurries.

Figure 6. Representation of the principles behind the stochastic generation of electrodes.
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Originally developed in the context of complex chemical 
systems, like those found in biology (the original developers 
were awarded with the Nobel Prize of Chemistry in 2013),[129] 
coarse grained molecular dynamics (CGMD) constitutes 
another coarse-graining approach to simulate particle suspen-
sions and slurries. CGMD is mesoscopic, i.e., it disregards all 
the degrees of freedom of smaller (atomistic/molecular) scales 
and “condensate” those degrees of freedom by some effective 
parameters. As for classical MD, CGMD models solve Newton 
equations then for beads or coarse-grained representations of 
smaller all-atom systems. The interaction forces (force fields) 
are determined by comparison between calculated and experi-
mentally measured structural and thermodynamic or other 
macroscopic properties, and/or by using mathematical tech-
niques to match the structural properties from CGMD simula-
tions to those obtained from all-atom models. Measurements 
of properties, such as surface tension, wettability, and the zeta 
potential for the solid particles, as well as, the viscosity and the 
electric permittivity of slurry, may reveal also useful to support 
the force fields calibration work. Several coarse graining strate-
gies exist to map the all-atom representation of the materials to 
the beads or coarse-grained representations, and to determine 
the force fields describing properly the physicochemical inter-
actions between different compounds in suspensions.[130–135] 
In addition to this phenomenological approach, other well-
stablished techniques, such as force matching,[136] iterative 
Boltzmann inversion,[137] and inverse MC[138] can be used to 
match the structural properties (Radial Distribution Functions) 
from CGMD simulations to those obtained from all-atom MD 
models. In the latter case, the reference all-atom MD simula-
tions can be built with classical/semi-empirical force fields 
but, if needed, their refinement calculation by using ab initio 
methods in sufficiently small systems may be also considered. 
The adoption of ML algorithms to speed up the CGMD parame-
terization is also possible.[139] Because of a significantly reduced 
number of accounted degrees of freedom, CGMD can be used 
to perform simulations of much larger system sizes than what 
would be atomistically attainable. Still, due to the dependence 
on the detailed interactions between the materials, the CGMD 
method can capture the impact of the materials chemistries 
and initial volume or mass fractions on the resulting slurry 
mesostructure.

In the context of electrochemical energy conversion devices, 
CGMD has been first used to understand self-organization phe-
nomena of polymer electrolyte fuel cell electrodes and proton 
conductive membranes.[140–143] Furthermore, CGMD was then 
applied to simulate NMC532-based slurries, as well as the 
subsequent electrode formation resulting from solvent evapo-
ration, supported on a first tentative of experimental valida-
tion with one viscosity versus shear-rate curve.[144] Ngandjong 
et al. [145] extended this approach for NMC111, by predicting 
cathode mesostructures as a function of electrode formulation 
(weight percentage of active material and carbon-binder) and 
integrating the resulting electrode mesostructures in an elec-
trochemical performance simulator coded in COMSOL Mul-
tiphysics, through a multiscale sequential-linking approach. In 
these CGMD models, slurries are represented as a mixture of 
spherical particles representing the active material and carbon-
binder domain. The particles can overlap a given extent and 

are embedded in each volume with periodic boundary condi-
tions. The models use interaction Lennard-Jones and Granular-
Hertzian force-fields with empirical parameters. The resolution 
of the Newton equations allows converging to an equilibrium 
state representing the slurry, which can be characterized in 
terms of density and viscosity versus applied shear-rate, the 
latter using Non-Equilibrium MD simulations. In that sense, 
Lombardo et al.[146] reported a set of systematic computational 
methods to determine the parameters needed in the force fields 
to reproduce correctly experimental densities and viscosities, 
as function of the slurry formulation and solid-to-liquid ratio. 
Such methods include Particle Swarm Optimization (PSO), ML 
and a combination of both, which allows to accelerate tremen-
dously (about 20 times) the time needed for the parameters’ 
determination. In this approach, the effect of solvent evapora-
tion has been modeled by shrinking the carbon-binder-domain 
(CBD) particles for a given extent in the slurries and solving 
again Newton equations to reach a new equilibrium state, corre-
sponding to the dried electrode. As the slurry simulation starts 
from a random spatial distribution of particles, this implies a 
small uncertainty in the final spatial location of the particles in 
the predicted electrode mesostructures. In this context, Rucci 
et al.[147] have quantified such uncertainties propagation when 
the predicted mesostructures for different formulations are 
incorporated in a 3D-resolved electrochemical model. This 
work shows slight variations of calculated porosities for several 
CGMD runs for a same formulation and solid-to-liquid ratio, in 
good agreement with experiments repeated several times under 
the same conditions, while it induces significant variations in 
the predicted electrochemical performance upon galvanostatic 
discharge, also observed at the experimental level. Still, there 
is a good agreement in the trends and overall specific capacity 
values between simulated and experimental results.

The CGMD-predicted electrode mesostructures can be char-
acterized by textural properties, such as porosity, pore size dis-
tribution, tortuosity factor, interfacial surface area of contact 
between AM and CBD, etc. Also, percolation theory and Fast 
Fourier Transform (FFT) methods[148] can be used for the deter-
mination of the effective conductivities of the calculated meso-
structures. These quantifications can be used as further input 
to validate the CBD-shrinking drying approach and as input 
parameters of Newman-like electrochemical models. The pre-
dicted electrode mesostructures have been also incorporated 
in 4D- (three spatial dimensions + time) physics-based models 
resolving electrochemistry and transport processes in operating 
cells.[149,150]

Computational Fluid Dynamics (CFD) models have been 
proposed to simulate the drying process of the electrode coat-
ings,[151] in particular to analyze potential binder migration 
upon solvent evaporation.[152,153] Such models assume 1D geom-
etries and solve coupled heat and mass transfer equations. 
However, it is not unusual modeling reports with 0D represen-
tations, which can be used for process optimization in a faster 
way.[154] These models can provide useful and fast insights on 
the optimal drying conditions to avoid binder migration along 
the coating thickness. However, they cannot predict electrode 
mesostructures in 3D and/or heterogeneities in plane, like the 
discrete coarse-graining approaches described before, because 
of their 0D or 1D assumptions. Predicting those mesostructures 
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in 3D is very important to understand heterogeneity and aniso-
tropic electrode behavior in relation to performance limitation 
and ageing, for instance, and this having the same degree of 
interest than doing computer tomography of electrodes.[21]

Discrete Element Method (DEM) is a well-suited technique 
to address the particles rearrangement/deformations upon 
mechanical compression in granular materials.[155] DEM has 
already been used for the simulation of morphological changes 
of composite electrodes for solid oxide fuel cells[156] and, in 
combination with CFD, for the simulation of the flow of par-
ticles suspensions in semi-solid redox flow batteries.[157] In the 
recent years a number of DEM models have been proposed 
to simulate the calendering process of LIB electrodes. DEM 
explicitly accounts for the mechanical interactions between the 
individual particles and allows capturing particles deforma-
tion and cracking. This method allows simulating the interac-
tion between discrete objects in contrast to the Finite Element 
Method (FEM), where the system is meshed and based on 
continuum mechanics. The DEM is much like MD: it solves 
Newton’s equations for the trajectory of individual particles 
and/or aggregates from their mechanical properties and inter-
action mathematical laws accounting for stress-driven defor-
mation. Mechanical stress testing can be performed for evalu-
ating the level of accuracy of the model for predicting micro/
mesostructural changes under mechanical stresses. The first 
DEM calendering model was proposed by Stershic et al.[158] for 
electrodes with spherical and ellipsoidal AM particles, starting 
from tomography images. Later, Sangrós-Giménez et al.[159–161] 
reported a series of DEM modeling studies to analyze the 
resulting particles assemblies as a function of the applied pres-
sure and particles size distribution, in terms of active material 
particles percolation and associated properties of interest, such 
as the associated electronic conductivity, for the optimal battery 
cell operation. Such models have been considering explicitly 
only the spatial location of active material particles, and the 
CBD has been considered implicitly as affecting cohesive forces 

between active material particles. In addition, these models 
have been able to reproduce well experimental compaction 
curves, i.e., electrode porosity versus applied pressure. How-
ever, their implicit consideration of the CBD makes not pos-
sible the prediction of its spatial location, its spatial distribution 
affecting in a heterogeneous way the electrode operation.[146,162]. 
Recently, Ngandjong et al.[163] proposed the first electrode calen-
dering DEM model able to account for the explicit location of 
both AM (NMC111) and CBD particles. Such model uses as an 
input an electrode mesostructure generated by the slurry and 
drying CGMD simulations described above, and a single set 
of force fields parameter values is found to fit simultaneously 
microindentation and compaction curves. The model can pre-
dict the spatial location of both AM and CBD, and the resulting 
mesostructures for different degree of compression are injected 
into a 4D-resolved performance simulator for predicting the 
influence of calendering on the lithiation upon galvanostatic 
discharge. Such chain of models (CGMD for the slurry and the 
drying simulation, followed by DEM for the calendering and 
the 4D-model for the electrochemical performance), constitutes 
the first workflow demonstrator of the LIB electrode manu-
facturing process based on physics-based models (Figure  7).  
Srivastava et al.[164] has also used DEM going directly from a 
random structure to an equilibrated one further pressed after-
ward to mimic the calendering. Despite this latter approach is 
not validated with experimental data, in particular regarding 
the impact of calendering pressure on the porosity, the authors 
were able to investigate the effect of CBD cohesion on the 
resulting electrode mesostructure, by analyzing a set of textural 
properties.

The electrolyte impregnation has been recently modeled 
using Lattice Boltzman Method (LBM), an approach which 
exists since more than 30 years in fields like fluid dynamics in 
porous media.[165] In LBM, a fluid is assumed to be composed 
of virtual particles moving and colliding with each other in a 
predefined lattice structure. Instead of treating these particles 

Figure 7. Workflow of LIB manufacturing, encompassing physical models for the slurry, drying, calendering and electrode electrochemical response. 
Different CBD and AM particle sizes considered are indicated. The discharged electrode image shows different lithiation states within the electrode. 
The fully lithiated state is shown colored in red, and the fully de-lithiated state is shown colored in blue. Reproduced with permission.[160] Copyright 
2021, Elsevier.
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by their positions and velocities, the LB approach treats them by 
a distribution function with appropriate relation time collision 
operators, e.g., the Bhatnagar-Gross-Krook (BGK) model[166] 
and lattice schemes. This includes “bounce back” boundary 
conditions, capturing the interactions with the pores’ walls, to 
enable the simulation of the electrolyte flow in the complex 
electrode mesostructures. Several experiments have been con-
ducted to study the wettability by the electrolyte of LIB porous 
electrodes. For instance, Wu et al.[167] showed that the wetting, 
i.e., the spreading of electrolyte into the pores, is governed by 
the electrolyte viscosity and surface tension. Chu et al.[168] inves-
tigated the influence of compaction on the porosity and elec-
trochemical performance of the positive electrode, which also 
suggested that the wettability has predominant effect at high 
C-rates. LBM has been used by Lee and Jeon[169] to simulate 
the electrolyte transport dynamics in electrode porous struc-
tures generated stochastically in 2D (Figure 8). The effect of the 
compression ratio of a porous electrode on wettability has then 
been explored with respect to variations of porosity and particle 
shape. Shodiev et al.[170] reported for the first time a 3D-resolved 
LBM model able to simulate electrolyte filling upon applied 
pressure of LIB porous electrodes obtained both from experi-
ments (micro X-ray tomography) and computations (stochastic 
generation, simulation of the manufacturing process using 
CGMD and DEM). The model allows obtaining insights about 
the impact of the electrode mesostructure on the speed of elec-
trolyte impregnation and wetting, highlighting the importance 
of porosity, pore size distribution and pores interconnectivity 
on the filling dynamics. Furthermore, the authors identify sce-
narios where volumes with trapped air (dead zones) appear and 
evaluate the impact of those on the electrochemical behavior of 
the electrodes.

2.2.3. Data-Driven Models of the Manufacturing Process

The DT of a manufacturing process aims to efficiently monitor 
and remotely manage the physical item, using data analytics 
and intelligence tools and technologies. It allows program-
ming maintenance schedules, load balancing, and predicting 
failures and disruptions, in which the operational parameters 
of machine sensors or machine components must be rectified 
or adapted continuously in the operation stage of the manu-
facturing process. Additionally, using advanced ML algorithms 
and data analytics, the integration of the real-time streaming 
sensor data with other operational inputs to create an opera-
tional data-driven DT will be facilitated. This operational DT 
will provide a more holistic and dynamic virtual representation 
of the whole manufacturing system, end-to-end processes, and 
operations. Thus, these analytics are important to be combined 
with a DT to reduce system downtime, improve production effi-
ciency, and perform predictive quality maintenance.

At the machine level, defect images can be identified using 
optical systems. In the production of goods, AI can be used to 
increase the performance of a production plant by means of 
collected production data or to find an optimal parameter con-
figuration.[171,172] In this sense, a system that correlates the mon-
itored process parameters with the quality characteristics, and 
independently learns to adjust the process variables to achieve 
the quality characteristics, is not yet known in battery cell pro-
duction.[173] Thus, such system would offer great potential with 
respect to fast and flexible commissioning or retrofitting of pro-
duction facilities.

Up to now, efforts to digitize production by means of algo-
rithmic functions have often been implemented as isolated 
solutions in a plant and in a process state in production. When 

Figure 8. a) Top: Schematics of roll pressing process for positive (top) and negative electrodes (bottom); bottom: 2D-LBM calculated liquid electrolyte 
distribution in the cathode with different compression ratios. Reproduced with permission.[169] Copyright 2014, Elsevier. b) 3D-resolved LBM model of 
electrolyte infiltration on uncalendered and calendered electrode mesostructures arising from tomography; top: electrolyte (red) filling dynamics and 
bottom) air (purple) distribution dynamics. Reproduced with permission.[170] Copyright 2021, The Authors.
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the boundary conditions of the heterogeneous production land-
scape change, these functions usually must be adapted and 
trained again, with a great expense. In addition, productization 
for easy scaling has not been seen in the state of the art so far. 
Value creation through the use of ML algorithms is only pos-
sible when the latter can be applied cost effectively and reliably. 
This requires the provision of the necessary hardware and soft-
ware IT infrastructure for the structured acquisition, and prepa-
ration of data for loading/learning and application, as well as 
for monitoring the required models at sufficient speed.

Defect detection in battery manufacturing is also key to 
ensure the required safety and lifetime properties of the bat-
tery. When manufacturing a LIB cell, an important step is the 
quality of the applied coating. Ideally, the coating is carefully 
grained and covers evenly and fully the substrate area. How-
ever, at this stage different defects may occur deviating from 
these ideal conditions. For example, when using the doctor 
blade equipment for achieving the coatings, a common fault 
is that it is clogged with agglomerates within the slurry mix. 
As a result, the applied coating may be not even and partially 
missing. At the usage stage, due to the defective electrodes the 
cells will suffer from severe degradation and even exothermic 
reactions can happen. To avoid these scenarios, optical methods 
can help in ensuring the quality of the electrodes. In addition, 
when developing research activities and novel slurry mixes 
are tested, electrodes can be poorly reproduced. In this other 
scenario, to provide a quality assurance of experimental slurry 
mixes, an optical inspection can be developed,[174] such as the 
one presented by Kapeller et al..[175] This inspection facilitates 
the quality assurance in the coating process of anode and 
cathode foils for battery cells. The developed system can acquire 
2.5D images at speed of up to 500 mm/s with a lateral resolu-
tion of 50 µm/px. To achieve this, a tight coupling of transport 
movement, interleaved strobing of four-line lights, an image 
acquisition using an FPGA-based controller, and a photometric 
stereo surface reconstruction algorithm have been used and 
successfully developed.

Even though the defects may come in a specific step of the 
manufacturing process, the digitalization should be seen in the 
full process. In this regard, a recent publication[64] describes 
that through an analysis of the organizational structure, func-
tional modules and information flow of a research pilot line, 
the requirements and modelling methods for an informa-
tion model can be defined. This definition brings a division 
categorizing four functional modules, namely, production 
management, material management, equipment manage-
ment and quality management. With similar approach, Thiede  
et al.[43,176,177] have reported several works on the use of ML at 
the LIB production process industrial scale. Overall, ML models 
were proposed to predict cell quality and performance as func-
tion of manufacturing machinery parameters and to assess 
energy efficiency involved the processing.

Focusing on the process models, still, the application of ML 
to battery manufacturing is emerging. Cunha et al.[178] reported 
for the first time ML models able to predict the loading and 
porosity of NMC111 electrodes as a function of manufacturing 
parameters. Such parameters include the slurry viscosity, solid-
to-liquid ratio, and AM weight performance. The authors com-
pared the prediction performance of three ML techniques, 

namely, decision tree, support vector machine and deep neural 
network. The ML model based on support vector machine was 
able to predict classification multi-dimensional maps that can 
be visualized through intuitive slices in 2D. Such maps provide 
a useful guidance of which manufacturing parameters to adopt 
to prepare an electrode with low, medium or high loading or 
porosity. This facilitates the work of discovering interdepend-
encies between parameters. The ML models were trained with 
only 80 experimental points of high quality, as each of them 
resulted from at least 3 experimental repetitions; prediction 
accuracy was above 80%. A similar approach, but this time 
using Gaussian process regression models, was reported later 
by Liu et al.[179] In that work the authors analyzed the effect of 
the AM content, solid-to-liquid ratio, viscosity and comma gap 
(i.e., the gap used during the coating process) on the electrode 
mass loading after the coating drying.

Primo et al.[180] recently reported an approach combining 
advanced statistics and unsupervised ML to unravel the cor-
relation between parameters involved in the electrode calen-
dering process and identify how their values impact electrode 
properties such as porosity, mechanical behavior, electronic 
conductivity, and capacity. Such parameters included applied 
pressure, roll temperature, and line speed, and the electrodes 
were NMC111-based. The authors found that that while porosity 
and the mechanical properties depend mainly on the applied 
pressure, the electrode’s conductivity correlates mainly with the 
temperature.

Chen et al.[181] recently applied advanced statistics and ML 
models to optimize the manufacturing process of thin all solid-
state battery electrolytes. ML models include unsupervised 
K-means clustering and supervised support vector machine. 
The combination of models allows predicting the impact of 
manufacturing conditions, such as the amount of solid electro-
lyte, liquid-to-solid ratio, and solvent composition, on the thin 
film electrolyte uniformity. The ML workflow shown in Figure 9 
is then used to design a suitable thin film electrolyte that has 
been tested in an all-solid-state-battery offering 100 cycles.

Encompassing high throughput experimentation, ML and 
physical modeling constitutes also an approach that has been 
proposed by Duquesnoy et al.[97] to develop digital twins of the 
electrode manufacturing process. The authors proposed an 
electrode stochastic generator able to predict how manufac-
turing parameters impact the electrode mesostructure in 3D. 
This is possible because the generator is informed by using 
both experimental and physics-based data (the latter arising 
from CGMD and DEM simulations as described above). Such 
generator can produce a massive number of electrode meso-
structures that can be characterized in terms of textural and 
physical properties, like the surface area of contact between 
AM and pores, tortuosity of the porous media, conductivity, etc. 
This allows building a dataset of type “input = manufacturing 
parameters, outputs = electrode properties”, which can be used 
for training ML models able to predict electrode properties 
from manufacturing parameters in the form of classifications 
or regressions. The authors demonstrated their concept for the 
electrode calendering step.

All in all, summary of the current modelling landscape has 
been added in Table 1. In addition, the main characteristics of 
each model are also introduced.
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2.3. Standards Landscape for Smart Battery Manufacturing and 
Current Projects in Digitalization of the Battery Manufacturing 
Process

The third layer in Figure  1 is related to Standards, which can 
provide comprehensive self-assessment mechanisms to deter-
mine current digital twin readiness level and roadmap the steps 
that need to take to achieve a full digital twin approach.

In manufacturing industry, standards help establishing 
a solid foundation for a lifecycle spanning the development 
and manufacturing process. Here, in the framework of digital 
transformation and particularly in the digitalization of battery 
manufacturing process, standards are of prime importance. 
In this regard, numerous national, regional, and international 
standards development organizations (SDOs) are starting to 
focus explicitly on the needs for and impacts of the technolo-
gies fundamental to build a smart manufacturing, such as DT, 
Internet of Things (IoT), Cloud Computing, Big Data and ana-
lytics. In this category are international standards bodies, such 
as ISO,[182] IEC,[183] ASME,[184] ASTM[185] and IEEE SA[186] and 
national bodies including professional organizations, which 
define best practices. To the authors' knowledge, there is no 

specific smart battery manufacturing standard available yet, 
and the standards developed so far are generic for any manu-
facturing industry. Taking this into account, this section pro-
vides a review of the existing standards, as well as the ones 
under development for digitalizing manufacturing industry in 
general.

Within ISO, the technical committee on automation sys-
tems and integration (TC184) has two subcommittees that 
are of particular interest in our landscape: SC4 and SC5. SC4 
focuses on industrial data standards, where at the time this 
perspective is written 774 standards are already published and 
37 of them are under development. Within this subcommittee, 
there is a specific Working Group (WG15)[187] that deals with 
the Digital manufacturing. Currently, they are working on the 
development of ISO 23 247[188] that provides an overview and 
general principles of creation of DTs of observable manufac-
turing elements including personnel, equipment, materials, 
processes, facilities, environment, products, and supporting 
documents.

Another aspect of smart manufacturing deals with the data 
science and analytical models to analyze real time production 
data from multiple sources, such as production machines, sys-
tems, and processes, and to accumulate this data into an auto-
mated manufacturing system.[189] To perform this vision of 
smart manufacturing, another requirement is to achieve inter-
connectivity across a diverse set of devices[52] and to acquire and 
integrate large amounts of data, which can be used to inform 
production decisions.[53] However, one of the main challenges 
in implementing this solution is establishing interoperability 
with each device. The technical committee ISO/TC 184/SC 
5 has worked on defining 62 published standards and 4 under 
development.[190]. Particularly, within this subcommittee the 
standard ISO 15 746 is developed. This standard provides a 
framework and general functionality of a method for integra-
tion of advanced process control and optimization (APC-O) 
capabilities for manufacturing systems.

IEC, which historically has served the electronics industry, is 
also dealing with many standards in Information Technology 
(IT) for smart manufacturing systems, including sensor and 
device networks and user interfaces. IEC is working with ISO 

Figure 9. Application of ML to optimize the manufacturing of thin films 
for all solid-state battery electrolytes. Reproduced with permission.[181] 
Copyright 2021, American Chemical Society.

Table 1. Summary of the current state of the art for models in the LIB manufacturing process.

Modeling approach Predictability Computational Cost (as for present 
computational technology)

Application examples (not exhaustive)

Empirical (0D) Low (transferability to other 
materials and conditions)

Low •Influence of formulation on slurry viscosity.
•Influence of calendering parameters on electrode properties such as 
porosity.

Physics-based CFD (1D or 
2D)

Intermediate Intermediate •Influence of drying rate on coating thickness.

Physics-based Discrete (3D) High High •Influence of formulation and solid content on slurry rheology
•Influence of drying rate and calendering conditions on electrode 
mesostructure in 3D.
•Influence of electrolyte infiltration parameters on electrode wettability.

Physics-based Surrogate (3D) High High (for training)/Low (for 
prediction)

•Influence of electrolyte infiltration parameters on electrode wettability.

Machine Learning High High (for training)/Low (for 
prediction)

•Influence of manufacturing parameters on electrode textural properties 
and performance.
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under ISO/IEC JTC 1,[191] an international standardization com-
mittee in the field of Information Technology. In particular, the 
ISO/IEC JTC 1/SC 41 named “Internet of things and digital 
twin” is also working building the standards related to DTs. 
The activity of this committee related to DT has just started and 
the associated projects are at very initial stage of development. 
Other interesting standards subcommittees for manufacturing 
industry are ISO/IEC JTC 1/SC 42 Artificial Intelligence, ISO/
IEC JTC 1/SC 7 Software and systems engineering—Busi-
ness Process Management Initiative, ISO/IEC JTC 1/SC 27 
Cybersecurity, ISO/IEC JTC 1/SC 32 Data Management and 
Interchange and ISO/IEC JTC 1/SC 38 Cloud Computing and 
Distributed Platforms.

Many ASTM International committees also support 
smart manufacturing technologies and applications. ASTM 
International staff and members from these committees are reg-
ularly working to break down silos through a high-caliber Smart 
Manufacturing Advisory Committee (SMAC[192]). Moreover, 
the SMAC is creating a more formalized structure of coordina-
tion and collaboration to share information and to identify new 
opportunities for new standards, programs and partnerships.

ASME has not any specific committee in the fields of smart 
manufacturing or DTs. Nevertheless, there are some subcom-
mittees[193] that are approaching to this field, such as the sub-
committee on Additive Manufacturing that develops standards 
to provide rules, guidance and examples of the design, manu-
facture, and quality assurance of additively manufactured part; 
and a subcommittee on Monitoring, Diagnostics and Prog-
nostic for Manufacturing Operations, which develops standards 
and guidelines to advance the design and implementation of 
monitoring, diagnostic and prognostic capabilities, along with 
ways of verifying and validating their performance, enhancing 
adaptive maintenance and operational control strategies within 
manufacturing.

The Institute of Electrical and Electronics Engineers Standards 
Association (IEEE SA) has its own Association for Digital Trans-
formation,[194] which is focused on such technologies as IoT, AI, 
Big Data, Virtual Reality (VR) /Augmented Reality (AR)/ Mixed 
Reality (MR)/ Extended Reality (XR) and DT. One of the most 
interesting projects is P2806 – System Architecture of Digital 
Representation for Physical Objects in Factory Environments[195] 
that defines standards for physical objects in a factory by defining 
its system architecture of digital representation. In addition, 
IEEE Computer Society Smart Manufacturing Standards Com-
mittee (IEEE C/SM SC)[196] is also working on the development 
of new standards for Smart Manufacturing (smart equipment, 
smart factory and smart services as an example). Established in 
September 2019, IEEE C/SM SC has the aim of supervising the 
development of IEEE Intelligent Manufacturing standards.

In Table 2 we compile the current standard landscape in dig-
italizing any manufacturing chain that can be extrapolated to 
the particular case of battery manufacturing plants based on the 
previously described Asset Administration Shell (AAS) and the 
alignment between Standards and the Reference Architecture 
Model for Industry 4.0 (RAMI 4.0) Administration Shell con-
cept. Table  2 is elaborated based on the information from,

[194] 
where Deutsches Institut für Normung (DIN) along with other 
organizations, published the “Reference Architecture Model for 
Industry 4.0 (RAMI 4.0)” to align standards in the context of 

Industry 4.0, showing how standards are linked to certain sub-
models, e.g., identification, communication, or engineering[197] 
that might constitute the administration shells.

When it comes to the initiatives that works on promoting and 
accelerating the implementation of the Industry 4.0 approach 
in many fields, we have identified among others German Plat-
form Industrie 4.0[199] which is shaping the digital transforma-
tion in manufacturing; Alliance for Internet of Things Innovation 
(AIOTI)[200] that was launched in 2015 by the European Com-
mission to support the creation of an innovative and industry 
driven European IoT ecosystem; Digital Twin Consortium 
(DG)[201] that joints industry, government and academia to  
drive consistency in vocabulary, architecture, security and inter-
operability of digital twin technology; and finally Smart Manu-
facturing Platform[202] that supports collaborative activities inte-
grating smart manufacturing applications. Another relevant 
initiative is the OntoCommons initiative[203] which is dedicated 
to the standardization of data documentation across all domains 
related to materials and manufacturing. OntoCommons takes a 
similar approach to the Industrial Ontology Foundry[204] (IOF) 
by first defining a top-level reference ontology, which acts as a 
source to grow industrial domain ontologies that use common 
terms and follow common principles. Battery domain ontologies 
BattINFO and BVCO, previously mentioned, are based on this 
initiative.

The digitalization of battery field is gradually following 
the same trend observed in many other sectors, where the 
growth of these kind of projects and efforts is increasing. At 
European level, besides the project ARTISTIC[91] funded by 
the European Research Council and the project DEFACTO[94] 
funded by the H2020 programme, both mentioned above, the 
project eLAB: Big Data in battery production by RWTH,[205] 
boosted by the Platform Industrie 4.0 initiative, aims at devel-
oping a procedure for plant linking and analysis of the cause-
effect relationships. Various technologies will be integrated 
into the demonstration line for cell production in Aachen 
and a detailed approach will be developed together with 
the technology partners. Similarly, the project “DigiBattPro  
4.0 – BW” – Digitized Battery Production 4.0[206] founded by Min-
istry of Economics, Labor and Tourism -Baden – Wuerttemberg 
aims at digitizing a battery cell production facility. Digitizing the 
entire process will make a significant contribution to improving 
and stabilizing the quality of lithium-ion battery cells. A par-
ticular focus of digitizing the battery cell production process is 
on developing a consistent traceability concept for tracking and 
assigning process parameters and product features.

European Li-Planet initiative[207] is another example in which 
the goal is to create a European innovation and production eco-
system by building a more competitive LIB cell manufacturing 
ecosystem. Also, the initiative aims to increase the production 
of LIB cells toward industrial scale, by bringing together the 
most relevant European Lithium battery cell pilot lines and the 
main stakeholders of the battery sector. The initiative includes 
also an Expert group aiming to define a roadmap toward battery 
manufacturing data standardization and digitalization.

Finally, BATTERY2030+ Initiative[208] suggested research 
actions to radically transform the way we discover, develop, and 
design ultra-high-performance, durable, safe, sustainable, and 
affordable batteries for use in real applications. Manufacturing 
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of future battery technologies is addressed in this roadmap[209] 
from the perspective of Industry 4.0, where the power of model-
ling and of AI was proposed to deliver DTs both for innovative, 
breakthrough cell geometries, avoiding or substantially mini-
mizing classical trial-and-error approaches, and for manufac-
turing methodologies.

2.3.1. Challenges and Opportunities

The process of digitalization is characterized by the transfer of 
analogue product features into digital values to enable an elec-
tronical and informational transfer, storage, and processing of 
the data. Figure 10 shows a representation of the digital twin of 
the battery manufacturing plant that mimics the real manufac-
turing plant and is capable to make intelligent decisions over 

the plant. In the figure, the main three pillars of the DT can be 
identified: the real manufacturing plant (left side of the figure), 
the virtual replica (right side of the figure) and the connection 
of data and information (represented by lines) that ties the vir-
tual replica and the real plant together. When operating, mas-
sive data may be extracted through the use of sensors from the 
physical assets, which can be transferred to the cloud for infor-
mation systems to process. Then, big data analytics can support 
system management and optimization including supervision 
and control, having the means to interact with the physical 
asset through the actuators.

By a successful integration of digitalization approaches in 
an automated production line, the overall costs of the battery 
cell can be significantly reduced. Hereafter, we summarize the 
main challenges to be overcome to move toward digitalization 
of the LIB cell manufacturing plant.

Firstly, the use of sensors and actuators can increase the 
quality of the produced batteries, as well as the monitoring and 
control of the whole process. At this moment, their main pur-
pose is mostly limited to basic safety functions, defect detection, 
automatic calibration of workpieces or simple measurement 
methods. However, as highlighted in the previous sections, the 
networking of intelligent sensors will enable enhanced func-
tionality of existing production facilities. Sensors are one of the 
key concepts in the digital transformation phase, and precisely 
because of their importance and the limited implementation of 
these in battery manufacturing, it is necessary to further inves-
tigate and develop research activities in which the location, 
amount and purpose of the integrated sensors will be deeply 
studied. This research activities would bring not only novel 
sensors, but also novel machinery and effective adaptation of 
already in use machinery with the sensors to give manufac-
turers the opportunity to adopt agile methodologies, making 
real-time changes to processes that can increase battery cells 
performance.

The interaction between the physical components and the 
virtual data layer of a production system, by considering the 
corresponding technologies for data acquisition, data storage 

Table 2. Examples of norms and standards providing properties for sub-
models of the Administration Shell[198].

Administration Shell IEC TR 62 794 & IEC 62 832 Digital Factory

Identification ISO 29 005 or URI Unique ID

Communication IEC 61 754 Fieldbus Profiles Chapter 2 
(Ethernet-real-time-enabled)

Engineering IEC 61 360/ISO 13 584 Standard data element
IEC 61 975 Data structures and elements
ecl@ss Database with product classes

Configuration IEC 61 804 EDDL
IEC 62 453 FDT

Safety (SI L) EN ISO 13 849
EN/IEC 61 508 Functional safety discrete
EN/IEC 61 511 Functional safety process

EN/IEC 62 061 Safety of machinery

Security (SL) IEC 62 443 Network and system security

Lifecycle Status IEC 62 890 Lifecycle

Energy Efficiency ISO/IEC 20140–5

Condition Monitoring VDMA 24 582 Condition Monitoring

Figure 10. Digital twin of the LIB manufacturing plant (Wifi symbol: it represents the usage of wireless technology which encourage the communica-
tion. Cloud symbol: it represents the cloud computing technology).
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and data processing needs to be integrated in an efficient and 
sustainable manner. This full digital representation of the 
production system, including the sensors and actuators and 
the semi-finished products of the battery cell and of course the 
final product battery cell itself, will enable the prediction of the 
impact of changes in production on the structure of the battery 
components and consequently on the final cell performance.

Within the DT of a LIB manufacturing plant, the flow of 
data begins with the measurement of quantities via sensors. In 
the next step, data must be integrated into a common frame-
work for data storage and processing to extract the necessary 
insight. This represents a challenge for a battery gigafactory, as 
the data generated is both voluminous and heterogeneous. A 
single gigafactory brings together many sub-processes and sup-
port laboratories, which may contain equipment from different 
manufacturers, each of them with their own software and file 
formats. There exists a need for tools to support the interoper-
ability of battery manufacturing data. A similar challenge faces 
the interoperability of models used in the core simulator of the 
digital twins as they need to exchange and simulate models that 
were developed at different times, and in different modelling 
environments.

In addition, lessons learned from other industries, e.g., 
automotive and machining sectors, should be successfully 
implemented in the LIB cell manufacturing plants. In this 
way, common languages, interfaces, protocols, and usage of 5G 
or perspective 6G wireless technology is encouraged between 
different process steps or machines and material combina-
tion, pursuing a more efficient battery manufacturing process. 
Similarly, the use of standardized communication protocols and 
sensors will increase the generation and therefore the usage 
and management of data. In fact, the integration of these intel-
ligent sensor systems will enable greater flexibility and higher 
reliability by combining available data sources with appropriate 
data analysis methods, such as ML and data mining. Accord-
ingly, this continuous stream of data should be generated and 
managed from process parameters, information from periph-
eral devices and product characteristics, and later analysed 
using powerful algorithms and computing systems. The dif-
ferent steps of the manufacturing process need to be fully in 
line, assuring a proper integration between them and their 
communication.

Recently, substantial progress has been made optimizing 
the battery manufacturing process and the performance of 
battery cells separately. However, there is a relative death of 
work establishing the links between changes in measurable 
quantities in the manufacturing process with the performance 
of battery cells. In this sense, there is a need for battery-specific 
APIs that support decision making and operation control of bat-
tery manufacturing processes targeting desired performance 
of the cells. Identifying the links between battery manufac-
turing and cell performance is facilitated by taking a combined 
approach applying physics-based models with big data and 
semantic knowledge maps of two domains: manufacturing and 
electrochemistry.

As previously mentioned, data interoperability is another key 
aspect to reach the goal of the digitalization of the battery man-
ufacturing process or developing a DT of a battery gigafactory. 
To do so, appropriate standards should be developed to address 

all the connectivity networks and APIs in a specific framework. 
The adoption of ontologies for both sharing data between com-
puterized tools and establishing a standard vocabulary for effi-
cient communication will be decisive in further development 
of ML models, in the digital transformation of LIBs manufac-
turing plants.

The battery manufacturing DT should enable more effec-
tive monitoring, optimization, and prediction of the physical 
counterpart. However, to develop a successful digital twin, 
deep understanding and planning of the production process 
and machines is crucial. The translation of key parameters 
into the full production system needs to be taken into consid-
eration. Like this, a better and integrated predictive mainte-
nance, fault, and error detection at both levels in the machinery, 
process and the product need to be developed. All this can 
be done through developing accurate, robust and efficient 
physics-based and data-driven models. One of the challenges asso-
ciated to the physics-based models in general (and 3D-resolved 
models in particular), concerns to the reduction of compu-
tational costs. Depending on the size of the modelled system 
and the number of particles considered in techniques such as 
Coarse-Grained Molecular Dynamics (CGMD) and Discrete Ele-
ment Method (DEM), computational cost can range from few 
hours to few days (also function of the type of hardware used 
for the calculations). One example of the reduction of the com-
putational burden is presented by Lombardo et al.[146] where 
efficient algorithms were implemented to accelerate the param-
eters optimization of the electrode slurry models using CGMD. 
Another approach to build efficient models is to implement 
either Reduced Order Models (ROM) or surrogate models, 
which are used to establish predictive DTs that could be effi-
ciently modeled based on embedded reduced order models or 
low-dimensional structures. An example of this approach is the 
recent work published by Shodiev et al.[210] on the use of a ML-
surrogate model of electrolyte infiltration in 3D that takes few 
seconds instead of several days of computational cost by LBM, 
or even the work presented by Quartulli et al.[211] on the use of 
ensemble ML surrogate models for cell optimization purposes.

Another challenge is to develop more accurate and detailed 
models. Currently, discrete models such as CGMD and the most 
detailed DEM describe the LIB electrode materials as a collection 
of effective particles representing active material and carbon-
binder domains (CBD). The latter consists in effective particles 
containing implicit representations of carbon additive particles 
and polymer. The remaining associated challenge is the explicit 
consideration of carbon additive and binder in these type of 
calculations without significantly increasing the computational 
cost. Such explicit consideration of the carbon additive and the 
polymeric binder as separate materials will permit a deeper anal-
ysis of their respective roles during the electrode operation.

On the other hand, the expected large deployment of ML 
models for battery manufacturing faces a new challenge asso-
ciated with the availability of public databases. Such databases 
are needed for appropriate training and testing of such models. 
Academic initiatives, such as the ARTISTIC project,[91,92] is 
already making significant amount of battery manufacturing 
experimental and modeling data openly available and offer free 
online services for battery manufacturing simulations from an 
Internet browser. While this trend of giving open access to data 
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helps in generating large volumes of data, and thus in building 
data-driven models, it is felt that it should be followed by the 
academia and industry as a whole in order to facilitate and 
accelerate the data-driven models implementation.

Another challenge constitutes the systematically reporting 
of quantified uncertainties and statistical errors in the experi-
mental databases. This is important to develop ML models able 
to make predictions with high degree of confidence. Still, ML 
models will be as good as the quality of the data used to train 
them. An important challenge here is the setting of standards 
for battery manufacturing data reporting. In this regard, a 
recent text mining study by El-Bouysidy et al.[212] carried out on 
13000 scientific articles on lithium ion and sodium ion batteries 
found that many articles do not report important manufactured 
electrode properties that are needed to reproduce reported 
experiments.

Computational workflows integrating at the same time 
physics-based and data-driven models to simulate the different 
battery manufacturing steps also constitute another challenge. 
Such approaches will encompass the advantages of physical 
(i.e., high fidelity models) and ML models (i.e., good prediction 
capability with low computational costs). Such computational 
workflows could have the advantage to allow the automatic defi-
nition of which kind of model to use depending on the problem 
of interest (type of material, manufacturing step, etc.).

Another remaining challenge is the incorporation of high-
fidelity 3D-resolved physics-based models in system level mod-
eling at the machinery level (including eventually robots); the 
integration of ML models not constituting a bottleneck by itself 
in view of their much less significant computational cost.

In any case, a clear definition of interactions and information 
exchange between models (process models and machine models), 
as well as the selection of suitable strategies for coupling and 
synchronization of the involved models result in new chal-
lenge, if we want to address the aim of the digital models as 
diagnostic tools, digitally highlighting circumstances that occur 
in the real manufacturing plant, and leveraged as a decision-
making support tool.

AR and VR can be considered among the key technolo-
gies to create a detailed visualization of the assets.[213] In the 
battery field, VR and MR have been recently developed by 
Franco et al.[214] as powerful tools for teaching battery concepts 
and for analyzing results such as the 3D morphology of bat-
tery electrodes arising from tomography characterizations or 
physics-based simulations of their manufacturing process. 
VR offers fully immersive and interactive virtual environ-
ments powered with models of the physical world. The authors 
reported a series of VR serious games providing to the player 
the opportunity to interact with materials, electrodes, and bat-
teries during their operation. Such serious games incorporate 
physical models describing the operation principles and allow 
to ease performing modeling computations (such as the evalu-
ation of an electrode geometrical tortuosity) because such com-
putations are performed just by playing. The authors shown 
that their VR and MR serious games and tools allow to signifi-
cantly ease the understanding of the complex battery concepts 
and operating principles, and significantly raises the engage-
ment and motivation of students.[91,215] Such VR tools, but also 
Augmented Reality (AR) superposing digital information in real 

environments, have definitively a strong potential to facilitate 
the training of operators working in battery production lines. 
Furthermore, the integration of physics-based and ML models 
in these tools can ease the use of computational models in bat-
tery R&D and the control of the manufacturing machines, con-
cepts being developed in the ARTISTIC project.[91,210,216]

Standards for smart battery manufacturing are another 
important aspect, which are seen of capital importance to 
reach a complete digitalization of the battery manufacturing 
process. Although, there is a growing awareness of the need 
for standards to power industry 4.0, this presents an opportu-
nity to the case of the smart battery manufacturing in order to 
better share existing best practice, and avenues for influence, 
in a more readily accessible way. In addition, certain standards 
have been developed to support the general interoperability of 
data and models within a digital twin framework, including 
the asset administration shell (AAS) and functional mock-up 
interface (FMI). However, more work is needed to adapt these 
approaches to the specific needs of the battery manufacturing 
industry. Another important goal to keep in mind is the inter-
national harmonization of Standards. A degree of global agree-
ment around core standards is needed to create greater busi-
ness certainty, facilitate trade, and support global innovation.

Finally, it is worthy to highlight the importance of a circular 
economy with respect to recycling and the steps of reuse and 
remanufacturing. Manufacturing and recycling steps are closely 
related. Accordingly, the digitalization and enhancement of 
the production processes may clarify and give key insights on 
how to develop concepts for a reuse of certain battery cells or a 
remanufacturing, for example, of battery modules and finally a 
safe and sustainable recycling process. Recent proposals call for 
the establishment of a Battery Identity Global Passport (BIGP) 
to support battery recycling. The BIGP is envisioned as a dig-
ital asset that accompanies the battery over its lifetime, from 
manufacturing to recycling, and should provide to recyclers the 
necessary information about the materials that are included in 
the cell, so that it can be processed in a tailored recycling pro-
cess. In this scenario, battery manufacturers will likely be asked 
to mint the BIGP for their cells, which again underscores the 
need for common data structures to support interoperability, 
not only internally within a gigafactory, but across the entire 
battery value chain.

All in all, the next big leap in smart battery manufacturing 
requires cooperation and compromise among scientists and 
manufacturers. The biggest roadblock to proper Industry 4.0 
implementation is the ability for machines and equipment to 
work together and share data. This can be avoided through 
standardization of machine-to-machine communication, IIoT 
communication and considering software database and com-
munication protocols for MPR, ERP, MES, etc. Once this is 
achieved, then battery manufacturing will turn into a fully mod-
ular and interchangeable set of software and hardware.

Overcoming all these challenges will bring about truly con-
nected battery manufacturing plant, where the DT will be 
capable of reproducing a physical asset or process accurately 
in the digital world and will enable more effective monitoring, 
optimization, and prediction of the physical counterpart, 
throughout its lifecycle, making what once cost billions to 
establish, now become the current trend.
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3. Future Trend: Toward Chemistry Neutral Battery 
Manufacturing Digital Twins

Regarding smart battery manufacturing, a new paradigm antic-
ipated in the BATTERY 2030+ roadmap[209] relates to the gener-
alized use of physics-based and data-driven modelling tools to 
assist in the design, development and validation of any inno-
vative battery cell and manufacturing process. In this regard, 
battery community has already started developing efficient 
and robust models able to simulate the battery cell design and 
the main and more critical manufacturing steps. This is being 
already covered for the optimization of LIB cell designs, but is 
limited to conventional LIB cell manufacturing processes.

In view of the expected rapid emergence of new battery tech-
nologies, such as all-solid-state batteries, lithium-sulfur bat-
teries, and metal-air batteries, among others, and the poorly 
understood physics of their manufacturing process and scal-
ability, it is necessary to take a step forward versus existing 
and short-term incoming manufacturing modeling solutions. 
Therefore, it is needed to develop an integrative modeling 
approach able to simulate and optimize fabrication processes of 
this new generation of battery technologies and their manufac-
turing processes. All in all, in order to meet the above targets, 
we envision that the academia should be emphasizing on the 
following aspects:

• Development of an integrative software solution able to in-
terface individual building simulation blocks pertaining to 
battery manufacturing processes in a wide diversity of fields 
beyond batteries themselves (e.g., additive manufacturing, 
chemical vapor deposition, extrusion, spark plasma sintering 
and dry process). Such approach should also be able to inte-
grate the optimization of the cell design features in connec-
tion to the “virtually” adopted manufacturing processes.

• In addition, the developed tool should couple both physics-
based and data-driven models of the cell design and manu-
facturing process in favor of developing modular modeling 
of manufacturing processes. This would allow predicting 
the impact of the unusual combination of disparate process 
techniques (chosen from virtual libraries built from different 
technical fields) on the resulting electrode texture and associ-
ated electrochemical performance.

• And, last but not least, such modeling tools will have to be 
developed in strong synergy with the remaining disciplines 
such as the data acquisition sensorization, interoperability, 
communication and ontology.

More information on future trends about chemistry neu-
tral battery manufacturing DT will be available in the corre-
sponding review paper[217] belonging to the dedicated special 
issue to BATTERY 2030+ in this journal.

4. Conclusions

With the current trend of digitalization and demand for cus-
tomized, high-quality batteries in highly variable batches, with 
short delivery times, the battery industry is forced to adapt 
its production and manufacturing style toward the Industry 

4.0 approach. Going digital will provide an invaluable set of 
tools in the fight to improve battery quality and reduce the pro-
duction costs, as the DTs have the potential to predict failures 
before they affect or damage the products, to enable manufac-
turers with instant troubleshooting by adjusting the param-
eters along the production line in the twin, and they also allow 
the engineers to commission and diagnose the batteries in 
real-time. Additionally, the models behind the DT will provide 
mechanistic insight into the full manufacturing process, for 
each of the individual steps, as well as the interdependencies 
in the context where the battery cell manufacturing process is 
highly complex.

Based on our technology watch, we can conclude our anal-
ysis emphasizing there is still plenty of room to reach the level 
acquired in some other industrial sectors, and we also provide 
certain recommendations for reaching the goal of having fully 
connected battery manufacturing facilities, including the con-
cepts of considering chemistry neutral approaches:

• Coupling of the multiscale models: building machine models 
interconnected to the process models, with the aim to depict 
the machining process as realistically as possible and to dis-
play the relevant process characteristics in local resolution, to 
describe the physical and technological phenomena over the 
whole process.

• Combining complementary strengths in physics-based and 
data-driven modeling approaches, the hybrid analysis and 
modeling framework will become particularly appealing for 
developing robust DT platforms and will enable battery re-
searchers and manufacturers to make more informed deci-
sions into the battery manufacturing chain, mitigating the 
challenges relevant to physical assets.

• Building flexible digital twin capable to be adapted to new 
and disruptive manufacturing and advanced chemistries.

• A reliable working of any DT will require data arising from 
different components, such as sensors and models; there-
fore, advanced communication technologies for keeping the 
data always synchronized will be required to make sure the 
two twins remain synchronized, data remains protected and 
secured.

• Additionally, we would like to highlight the importance of 
standardization. In a fully connected and interactive battery 
manufacturing plant, different physical assets will be inter-
acting with each other, and the corresponding digital twins 
will also have to interact with the physical assets. To facili-
tate these interconnections, there will be a need for standards 
cutting across different domain areas. Even interoperabil-
ity aspects are of paramount importance in the Industry 4.0 
framework.

• Moreover, the digitalization procedure should move toward 
the inclusion of the human factor while digitalizing manu-
facturing processes.

To conclude, it is undeniable that DTs are an emerging trend 
in many sectors and, although their technology is still at its 
infancy, further research efforts toward testing and implemen-
tation of DTs will facilitate the digital transformation of the bat-
tery manufacturing plants, with the aim to achieve the required 
targets in saving expenses and ensuring sustainability.
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