361 research outputs found

    Novel gallium(III) complexes transported by MDR1 P-glycoprotein: potential PET imaging agents for probing P-glycoprotein-mediated transport activity in vivo

    Get PDF
    AbstractBackground: Multidrug resistance (MDR) mediated by expression of MDR1 P-glycoprotein (Pgp) represents one of the best characterized barriers to chemotherapy in cancer patients. Positron emission tomography (PET) agents for analysis of Pgp-mediated drug transport activity in vivo would enable noninvasive assessment of chemotherapeutic regimens and MDR gene therapy.Results: Candidate Schiff-base phenolic gallium(III) complexes were synthesized from their heptadentate precursors and gallium(III)acetylacetonate. Crystal structures demonstrated a hexacoordinated central gallium with overall trans-pseudo-octahedral geometry. Radiolabeled 67Ga-complexes were obtained in high purity and screened in drug-sensitive (Pgp−) and MDR (Pgp+) tumor cells. Compared with control, lead compound 6 demonstrated antagonist-reversible 55-fold lower accumulation in Pgp-expressing MDR cells. Furthermore, compared with wild-type control, quantitative pharmacokinetic analysis showed markedly increased penetration and retention of 6 in brain and liver tissues of mdr1a/b(−/−) gene disrupted mice, correctly mapping Pgp-mediated transport activity at the capillary blood–brain barrier and hepatocellular biliary cannalicular surface in vivo.Conclusions: These results indicate that gallium(III) complex 6 is recognized by MDR1 Pgp as an avid transport substrate, thereby providing a useful scaffold to generate 68Ga radiopharmaceuticals for molecular imaging of Pgp transport activity in tumors and tissues in vivo using PET

    Novel treatment option for MUC16-positive malignancies with the targeted TRAIL-based fusion protein Meso-TR3

    Get PDF
    BACKGROUND: The targeted delivery of cancer therapeutics represents an ongoing challenge in the field of drug development. TRAIL is a promising cancer drug but its activity profile could benefit from a cancer-selective delivery mechanism, which would reduce potential side effects and increase treatment efficiencies. We recently developed the novel TRAIL-based drug platform TR3, a genetically fused trimer with the capacity for further molecular modifications such as the addition of tumor-directed targeting moieties. MUC16 (CA125) is a well characterized biomarker in several human malignancies including ovarian, pancreatic and breast cancer. Mesothelin is known to interact with MUC16 with high affinity. In order to deliver TR3 selectively to MUC16-expressing cancers, we investigated the possibility of targeted TR3 delivery employing the high affinity mesothelin/MUC16 ligand/receptor interaction. METHODS: Using genetic engineering, we designed the novel cancer drug Meso-TR3, a fusion protein between native mesothelin and TR3. The recombinant proteins were produced with mammalian HEK293T cells. Meso-TR3 was characterized for binding selectivity and killing efficacy against MUC16-positive cancer cells and controls that lack MUC16 expression. Drug efficacy experiments were performed in vitro and in vivo employing an intraperitoneal xenograft mouse model of ovarian cancer. RESULTS: Similar to soluble mesothelin itself, the strong MUC16 binding property was retained in the Meso-TR3 fusion protein. The high affinity ligand/receptor interaction was associated with a selective accumulation of the cancer drug on MUC16-expressing cancer targets and directly correlated with increased killing activity in vitro and in a xenograft mouse model of ovarian cancer. The relevance of the mesothelin/MUC16 interaction for attaching Meso-TR3 to the cancer cells was verified by competitive blocking experiments using soluble mesothelin. Mechanistic studies using soluble DR5-Fc and caspase blocking assays confirmed engagement of the extrinsic death receptor pathway. Compared to non-targeted TR3, Meso-TR3 displayed a much reduced killing potency on cells that lack MUC16. CONCLUSIONS: Soluble Meso-TR3 targets the cancer biomarker MUC16 in vitro and in vivo. Following attachment to the tumor via surface bound MUC16, Meso-TR3 acquires full activation with superior killing profiles compared to non-targeted TR3, while its bioactivity is substantially reduced on cells that lack the tumor marker. This prodrug phenomenon represents a highly desirable property because it has the potential to enhance cancer killing with fewer side-effects than non-targeted TRAIL-based therapeutics. Thus, further exploration of this novel fusion protein is warranted as a possible therapeutic for patients with MUC16-positive malignancies

    Synthetic Lethality of Chk1 Inhibition Combined with p53 and/or p21 Loss During a DNA Damage Response in Normal and Tumor Cells

    Get PDF
    Cell cycle checkpoints ensure genome integrity and are frequently compromised in human cancers. A therapeutic strategy being explored takes advantage of checkpoint defects in p53-deficient tumors in order to sensitize them to DNA-damaging agents by eliminating Chk1-mediated checkpoint responses. Using mouse models, we demonstrated that p21 is a key determinant of how cells respond to the combination of DNA damage and Chk1 inhibition (combination therapy) in normal cells as well as in tumors. Loss of p21 sensitized normal cells to the combination therapy much more than did p53 loss and the enhanced lethality was partially blocked by CDK inhibition. In addition, basal pools of p21 (p53 independent) provided p53 null cells with protection from the combination therapy. Our results uncover a novel p53-independent function for p21 in protecting cells from the lethal effects of DNA damage followed by Chk1 inhibition. As p21 levels are low in a significant fraction of colorectal tumors, they are predicted to be particularly sensitive to the combination therapy. Results reported in this study support this prediction

    Combined VEGF and CXCR4 antagonism targets the GBM stem cell population and synergistically improves survival in an intracranial mouse model of glioblastoma

    Get PDF
    Glioblastoma recurrence involves the persistence of a subpopulation of cells with enhanced tumor-initiating capacity (TIC) that reside within the perivascular space, or niche (PVN). Anti-angiogenic therapies may prevent the formation of new PVN but have not prevented recurrence in clinical trials, suggesting they cannot abrogate TIC activity. We hypothesized that combining anti-angiogenic therapy with blockade of PVN function would have superior anti-tumor activity. We tested this hypothesis in an established intracranial xenograft model of GBM using a monoclonal antibody specific for murine and human VEGF (mcr84) and a Protein Epitope Mimetic (PEM) CXCR4 antagonist, POL5551. When doses of POL5551 were increased to overcome an mcr84-induced improvement in vascular barrier function, combinatorial therapy significantly inhibited intracranial tumor growth and improved survival. Anti-tumor activity was associated with significant changes in tumor cell proliferation and apoptosis, and a reduction in the numbers of perivascular cells expressing the TIC marker nestin. A direct effect on TICs was demonstrated for POL5551, but not mcr84, in three primary patient-derived GBM isolates. These findings indicate that targeting the structure and function of the PVN has superior anti-tumor effect and provide a strong rationale for clinical evaluation of POL5551 and Avastin in patients with GBM

    The ARF Tumor Suppressor Regulates Bone Remodeling and Osteosarcoma Development in Mice

    Get PDF
    The ARF tumor suppressor regulates p53 as well as basic developmental processes independent of p53, including osteoclast activation, by controlling ribosomal biogenesis. Here we provide evidence that ARF is a master regulator of bone remodeling and osteosarcoma (OS) development in mice. Arf-/- mice displayed increased osteoblast (OB) and osteoclast (OC) activity with a significant net increase in trabecular bone volume. The long bones of Arf-/- mice had increased expression of OB genes while Arf-/- OB showed enhanced differentiation in vitro. Mice transgenic for the Tax oncogene develop lymphocytic tumors with associated osteolytic lesions, while Tax+Arf-/- mice uniformly developed spontaneous OS by 7 months of age. Tax+Arf-/- tumors were well differentiated OS characterized by an abundance of new bone with OC recruitment, expressed OB markers and displayed intact levels of p53 mRNA and reduced Rb transcript levels. Cell lines established from OS recapitulated characteristics of the primary tumor, including the expression of mature OB markers and ability to form mineralized tumors when transplanted. Loss of heterozygosity in OS tumors arising in Tax+Arf+/- mice emphasized the necessity of ARF-loss in OS development. Hypothesizing that inhibition of ARF-regulated bone remodeling would repress development of OS, we demonstrated that treatment of Tax+Arf-/- mice with zoledronic acid, a bisphosphonate inhibitor of OC activity and repressor of bone turnover, prevented or delayed the onset of OS. These data describe a novel role for ARF as a regulator of bone remodeling through effects on both OB and OC. Finally, these data underscore the potential of targeting bone remodeling as adjuvant therapy or in patients with genetic predispositions to prevent the development of OS

    N-Terminal Prolactin-Derived Fragments, Vasoinhibins, Are Proapoptoptic and Antiproliferative in the Anterior Pituitary

    Get PDF
    The anterior pituitary is under a constant cell turnover modulated by gonadal steroids. In the rat, an increase in the rate of apoptosis occurs at proestrus whereas a peak of proliferation takes place at estrus. At proestrus, concomitant with the maximum rate of apoptosis, a peak in circulating levels of prolactin is observed. Prolactin can be cleaved to different N-terminal fragments, vasoinhibins, which are proapoptotic and antiproliferative factors for endothelial cells. It was reported that a 16 kDa vasoinhibin is produced in the rat anterior pituitary by cathepsin D. In the present study we investigated the anterior pituitary production of N-terminal prolactin-derived fragments along the estrous cycle and the involvement of estrogens in this process. In addition, we studied the effects of a recombinant vasoinhibin, 16 kDa prolactin, on anterior pituitary apoptosis and proliferation. We observed by Western Blot that N-terminal prolactin-derived fragments production in the anterior pituitary was higher at proestrus with respect to diestrus and that the content and release of these prolactin forms from anterior pituitary cells in culture were increased by estradiol. A recombinant preparation of 16 kDa prolactin induced apoptosis (determined by TUNEL assay and flow cytometry) of cultured anterior pituitary cells and lactotropes from ovariectomized rats only in the presence of estradiol, as previously reported for other proapoptotic factors in the anterior pituitary. In addition, 16 kDa prolactin decreased forskolin-induced proliferation (evaluated by BrdU incorporation) of rat total anterior pituitary cells and lactotropes in culture and decreased the proportion of cells in S-phase of the cell cycle (determined by flow cytometry). In conclusion, our study indicates that the anterior pituitary production of 16 kDa prolactin is variable along the estrous cycle and increased by estrogens. The antiproliferative and estradiol-dependent proapoptotic actions of this vasoinhibin may be involved in the control of anterior pituitary cell renewal

    The human decatenation checkpoint

    Get PDF
    Chromatid catenation is actively monitored in human cells, with progression from G2 to mitosis being inhibited when chromatids are insufficiently decatenated. Mitotic delay was quantified in normal and checkpoint-deficient human cells during treatment with ICRF-193, a topoisomerase II catalytic inhibitor that prevents chromatid decatenation without producing topoisomerase-associated DNA strand breaks. Ataxia telangiectasia (A-T) cells, defective in DNA damage checkpoints, showed normal mitotic delay when treated with ICRF-193. The mitotic delay in response to ICRF-193 was ablated in human fibroblasts expressing an ataxia telangiectasia mutated- and rad3-related (ATR) kinase-inactive ATR allele (ATRki). BRCA1-mutant HCC1937 cells also displayed a defect in ICRF-193-induced mitotic delay, which was corrected by expression of wild-type BRCA1. Phosphorylations of hCds1 or Chk1 and inhibition of Cdk1 kinase activity, which are elements of checkpoints associated with DNA damage or replication, did not occur during ICRF-193-induced mitotic delay. Over-expression of cyclin B1 containing a dominant nuclear localization signal, and inhibition of Crm1-mediated nuclear export, reversed ICRF-193-induced mitotic delay. In combination, these results imply that ATR and BRCA1 enforce the decatenation G2 checkpoint, which may act to exclude cyclin B1/Cdk1 complexes from the nucleus. Moreover, induction of ATRki produced a 10-fold increase in chromosomal aberrations, further emphasizing the vital role for ATR in genetic stability

    Type I Interferons Link Viral Infection to Enhanced Epithelial Turnover and Repair

    Get PDF
    The host immune system functions constantly to maintain chronic commensal and pathogenic organisms in check. The consequences of these immune responses on host physiology are as yet unexplored, and may have long-term implications in health and disease. We show that chronic viral infection increases epithelial turnover in multiple tissues, and the antiviral cytokines type I interferons (IFNs) mediate this response. Using a murine model with persistently elevated type I IFNs in the absence of exogenous viral infection, the Irgm1−/− mouse, we demonstrate that type I IFNs act through nonepithelial cells, including macrophages, to promote increased epithelial turnover and wound repair. Downstream of type I IFN signaling, the highly related IFN-stimulated genes Apolipoprotein L9a and b activate epithelial proliferation through ERK activation. Our findings demonstrate that the host immune response to chronic viral infection has systemic effects on epithelial turnover through a myeloid-epithelial circuit
    • …
    corecore