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Abstract 

The core clinical feature of semantic dementia (SD) is a progressive yet selective degradation 

of conceptual knowledge. Understanding the cognitive and neuroanatomical basis for this 

deficit is a key challenge for both clinical and basic science. Some researchers attribute the 

deficit to damage to pan-modal conceptual representations that are independent of any 

particular sensory-motor modality and are represented in the ventrolateral anterior temporal 

lobes. Others claim that damage to modality-specific visual feature representations in the 

occipitotemporal ‘ventral stream’ is responsible. In the present study, we tested the 

hypothesis that concept degradation in SD involves a combination of these pan-modal and 

modality-specific elements. We investigated factors influencing knowledge of object 

concepts by analysing 43 sets of picture naming data from SD patients. We found a strong 

influence of two pan-modal factors: highly familiar and typical items were named more 

accurately than less familiar/typical items at all stages of the disorder. Items associated with 

rich sensory-motor information were also named more successfully at all stages, and this 

effect was present for sound/motion knowledge and tactile/action knowledge when these 

modalities were studied separately. However, there was no advantage for items rich in visual 

colour/form characteristics; instead, this factor had an increasingly negative impact in the 

later stages of the disorder. We propose that these results are best explained by a combination 

of (a) degradation of modality-independent conceptual representations, which is present 

throughout the disorder and is a consequence of atrophy focused on the ventrolateral anterior 

temporal lobes and (b) a later, additional deficit for concepts that depend heavily on visual 

colour/form information, caused by the spreading of atrophy to posterior ventral temporal 

regions specialised for representing this information. This explanation is consistent with a 

graded hub-and-spoke model of conceptual knowledge, in which there is a gradual 

convergence of information along the temporal lobes, with visual attributes represented in the 

posterior cortex giving way to pan-modal representations in the anterior areas. 

 

Keywords: conceptual knowledge; hub-and-spoke; ventral stream; anterior temporal lobe 
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Introduction 

 The goal of this study was to improve our understanding of the nature of conceptual 

knowledge impairment in semantic dementia (SD), a neurodegenerative disorder in which 

conceptual knowledge progressively degrades but other cognitive functions remain largely 

intact (Hodges and Patterson, 2007, Warrington, 1975). SD is a highly selective disorder, at 

least in its early stages, both in terms of the cognitive deficit and the brain regions affected by 

atrophy. For this reason, SD has been influential in shaping theories of concept 

representation, making an understanding of this disorder important from both theoretical and 

clinical perspectives. In particular, this group of patients has been the inspiration behind what 

has become known as the hub-and-spoke theory of conceptual knowledge (Patterson et al. , 

2007, Pobric et al. , 2010a, Rogers et al. , 2004a). The “spokes” in this model refer to a 

distributed network of brain regions that are specialised for representing conceptual 

information arising in different sensory-motor modalities. So, for example, the shape of a 

banana is thought to be coded in areas of the ventral temporal cortex specialised for 

representing the visual forms of objects (Chao et al. , 1999, Martin et al. , 1995, Thompson-

Schill et al. , 1999), the actions required to peel it in frontoparietal regions specialised for 

coding object manipulation (Buxbaum and Saffran, 2002, Goldberg et al. , 2006, Ishibashi et 

al. , 2011, Kellenbach et al. , 2003) and its gustatory properties in orbitofrontal cortex 

(Goldberg et al. , 2006). There is a broad consensus that such a network of modality-specific 

knowledge regions exists (Barsalou, 2008, Binder and Desai, 2011, Kiefer and Pulvermuller, 

2012, Martin, 2007, Patterson et al. , 2007). Damage to particular spoke regions has been 

proposed as an explanation for category-specific semantic disorders (e.g., Capitani et al. , 

2003, Caramazza and Shelton, 1998, Warrington and Shallice, 1984). For example, damage 

to inferior parietal regions involved in representing actions disproportionately affects 

processing of tools and other manipulable manmade objects (Buxbaum and Saffran, 2002). 
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 The hub-and-spoke model also posits the existence of a pan-modal integrative “hub” 

region, which receives inputs from the spoke regions and uses them to form transmodal 

conceptual representations that capture the deeper patterns of coherent variation across all 

sensory-motor and verbal modalities. These integrated representations are thought necessary 

because similarity in any single sensory-motor domain is, at best, only a partial guide to true 

conceptual similarity (Lambon Ralph et al. , 2010). For example, apples and bananas have 

different colours and shapes but are conceptually very similar. The proposal of a transmodal 

hub was motivated by the pan-modal, pan-category conceptual deficits experienced by 

patients with SD. SD patients display poor conceptual knowledge in every modality tested, 

including written and spoken words (Jefferies et al. , 2009), pictures (Bozeat et al. , 2000), 

non-verbal sounds (Goll et al. , 2010), smells (Luzzi et al. , 2007), tastes (Piwnica-Worms et 

al. , 2010) and object manipulation (Hodges et al. , 2000). In addition, all categories of object 

are affected (Lambon Ralph et al. , 2007) as are all types of word (Hoffman and Lambon 

Ralph, 2011, Hoffman et al. , in press). These knowledge deficits are correlated with cortical 

atrophy and hypometabolism centred on the ventrolateral, anterior temporal lobes (Mion et 

al. , 2010, Nestor et al. , 2006), suggesting that the pan-modal knowledge deficit is due to 

damage to a single, neuroanatomically constrained region. This view is now supported by 

converging evidence from a number of other methodologies. Distortion-corrected fMRI 

(Binney et al. , 2010, Visser and Lambon Ralph, 2011), PET (Sharp et al. , 2004, 

Vandenberghe et al. , 1996), MEG (Marinkovic et al. , 2003) and transcranial magnetic 

stimulation (Pobric et al. , 2007, Pobric et al. , 2010b) have all revealed involvement of the 

anterior, ventrolateral temporal lobes in processing various kinds of concept presented in a 

number of different modalities. 

 We refer to this perspective as the pan-modal view of SD because it emphasises the 

involvement of verbal and non-verbal information from all sensory modalities in the   
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conceptual breakdown. The hub-and-spoke model attributes this deficit to damage to a 

transmodal hub region that makes a critical contribution to all types of concept. In contrast, 

other researchers have highlighted the disproportionate loss of visual-perceptual knowledge 

in SD (Bonner et al. , 2009, Breedin et al. , 1994, Pulvermuller et al. , 2010). Initial evidence 

for this assertion came from studies that probed knowledge for particular object features 

(Breedin et al. , 1994, Lambon Ralph et al. , 1999, Lambon Ralph et al. , 2003, Tyler and 

Moss, 1998). For example, when SD patients are asked to define objects, their descriptions 

lack much of the information that healthy controls provide. Lambon Ralph et al. (2003) sub-

divided their responses according to the type of information provided (perceptual, functional 

or encyclopaedic) and found that SD patients were more likely to omit the perceptual features 

of objects than their functional or encyclopaedic attributes. In addition, when patients are 

asked to draw common objects, their drawings lack many of the visual features produced by 

controls (Bozeat et al. , 2003). These findings have led some to conclude that knowledge 

deficits in SD are due primarily to damage to areas of the ventral, posterior temporal lobes 

specialised for coding the visual properties of objects (Antonucci and Alt, 2011, Bonner et al. 

, 2010, Gainotti, 2011, Yi et al. , 2007). This view is consistent with the observation that 

occasional, individual SD patients show better comprehension of abstract relative to concrete 

words (Bonner et al. , 2009, Breedin et al. , 1994, Macoir, 2009, Papagno et al. , 2009, 

Warrington, 1975, Yi et al. , 2007), although the reverse pattern is more common in case-

series of SD patients (Hoffman and Lambon Ralph, 2011, Hoffman et al. , in press, Jefferies 

et al. , 2009). 

 The pan-modal and visual-deficit perspectives on SD are not mutually exclusive. 

Indeed, in terms of the hub-and-spoke model, it is possible that a combination of damage to 

the pan-modal hub region and the modality-specific visual spoke region gives rise to the 

pattern of deficits observed in SD (Bonner et al. , 2009, Pulvermuller et al. , 2010). To test 
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this hypothesis, we investigated the degree to which the function of the hub and spoke 

regions are impaired in SD, by analysing the patients’ performance in object naming. Object 

naming is a sensitive and reliable indicator of conceptual knowledge impairment in SD and 

naming problems are evident even in the early stages of the disorder (Lambon Ralph et al. , 

2001, Woollams et al. , 2008). We investigated the factors underpinning naming success in a 

large corpus of picture naming data collected by our research group over the past 10 years (43 

observations from 16 SD patients). We assumed that the functional status of hub and spoke 

regions could be inferred from the patients’ success in naming objects with particular 

properties. The hub-and-spoke model states that all concepts rely on the transmodal hub but, 

in addition, concepts rely on the individual modality-specific spokes to varying extents, 

depending on which modalities critically contribute to the concept (Pobric et al. , 2010a). For 

example, in addition to the transmodal hub, the action spoke is thought to be heavily involved 

in naming scissors, because a key element of our knowledge of scissors is the way in which 

we manipulate them. In contrast, the action spoke is not expected to be important for naming 

an elephant; however, the visual spoke makes a critical contribution because an elephant’s 

most salient feature is its distinctive appearance. Thus, we assessed the status of the various 

spokes by contrasting sets of items with high vs. low dependence on particular spoke regions 

(while controlling for other relevant factors). Greater impairment for items that rely heavily 

on a particular spoke region would indicate that the underlying representations in that spoke 

were compromised. To quantify the dependence of particular concepts on different spokes, 

we used data from a recent study in which participants rated the extent to which they 

associated objects with experience in eight sensory-motor modalities (colour, visual form, 

motion, sound, taste, smell, tactile and action; Hoffman and Lambon Ralph, submitted). This 

allowed us to determine (a) whether objects that rely heavily on visual information are 
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particularly impaired in the disorder, as predicted by the visual deficit hypothesis and (b) 

whether information in other sensory-motor modalities was similarly affected. 

 We also assessed the impact of three pan-modal object properties that are not tied to 

any particular sensory modality: familiarity, typicality and sensory richness. If the loss of 

concepts in SD is due primarily to degradation of visual feature knowledge, these factors 

would not be especially influential because none is based directly on information from this 

modality. In contrast, the pan-modal hub theory of SD holds that these factors have a strong 

influence on success across a range of semantic tasks, including naming (Funnell, 1995, 

Jefferies et al. , 2009, Mayberry et al. , 2011, Patterson et al. , 2007, Woollams et al. , 2008). 

Highly familiar and typical items are thought to be represented more strongly in the hub, 

making them more robust to damage (Rogers et al. , 2004a). As a new additional measure of 

the transmodal hub contribution to semantic representation, we assessed whether knowledge 

in SD was influenced by the total amount of sensory-motor information associated with the 

concept over all modalities, which we termed its sensory richness. 

 

Method 

Participants 

 This study features data from 16 patients with SD, collected between 2001 and 2010. 

The patients were referred from the RICE memory clinic in Bath or from other specialist 

clinics in the north-west of England. Each had received a clinical diagnosis of SD based on 

caregiver interview, neuropsychological assessment and evidence of temporal lobe atrophy in 

structural brain imaging. All patients fulfilled current diagnostic criteria for SD (Gorno-

Tempini et al. , 2011). Most have appeared in one or more previous studies by our research 

group (e.g., Hoffman and Lambon Ralph, 2011, Jefferies et al. , 2004, Lambon Ralph et al. , 

2010, Patterson et al. , 2006). 
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 Our analyses were conducted on data from the 64-item picture naming test that forms 

part of the Cambridge Semantic Battery (Bozeat et al. , 2000), which we use routinely to 

assess integrity of conceptual knowledge.  As patients were studied longitudinally, many 

completed this test on multiple occasions. Due to the progressive nature of SD, and in 

keeping with previous studies (Lambon Ralph et al. , 2001, Woollams et al. , 2007, 

Woollams et al. , 2008), we treated each test administration as an independent observation. 

The delay between successive administrations of the naming test was typically between 6 and 

12 months and was never less than 3 months. The 16 patients yielded a total of 43 

observations. These were divided into three groups by classifying the 14 highest naming 

scores as “mild”, the 14 lowest scores as “severe” and the remaining 15 scores as “moderate”. 

 

Background neuropsychological testing 

 Data from standard neuropsychological tests are presented in Table 1, which shows 

mean scores for the mild, moderate and severe naming groups. In addition, data from each 

individual patient, taken from the first occasion on which they completed the full assessment 

battery, is provided in the Supplementary Materials. In Table 1, figures in italics indicate the 

number of observations contributing to each mean. In the most recent incarnation of our 

assessment regime, patients complete a full assessment battery once a year but additionally 

complete core semantic knowledge tests (i.e., picture naming and word-picture matching) 

every six months. For this reason, there are some occasions on which a naming score was 

available but other tests were not completed. Mean values are shown in bold if they are 

outside the normal range (i.e., below published cut-off for the test, or greater than two 

standard deviations below the mean for healthy subjects). All three groups performed outside 

the normal range on a series of tests that probe semantic/conceptual knowledge. These 

consisted of picture naming, matching spoken words to pictures, the Camel and Cactus test (a 
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semantic association test similar to the Pyramids and Palm Trees; see Bozeat et al. , 2000) 

and generation of examples belonging to six semantic categories (category fluency). Naming 

was considerably impaired even in the mild group (the cut-off for normal performance is 

59/64 on this relatively easy test) and declined steadily. On the other tests, performance 

declined in parallel with naming, indicating that the naming deficit in these patients was 

symptomatic of a more general deterioration in conceptual knowledge. 

 In contrast, other cognitive functions were relatively spared, in keeping with the usual 

clinical picture in SD. General cognitive status was assessed with the MMSE (Folstein et al. , 

1975). Attention and executive function were tested using forward and backward digit span 

(Wechsler, 1987), letter fluency (FAS) and Raven’s coloured progressive matrices (Raven, 

1962). Finally, visuospatial function was assessed with copying of the Rey complex figure 

(Lezak, 1976) and four subtests from the VOSP (Visual Object and Space Perception Battery; 

Warrington and James, 1991). The mild group displayed no impairments on any of these 

tests. There was evidence for some slight decline in the moderate and severe groups, most 

notably on the MMSE and the object decision component of the VOSP. These can be 

attributed to deterioration in language comprehension/production, which is an integral part of 

the MMSE, and in object recognition, which declines as patients lose their knowledge of 

previously familiar objects (Rogers et al. , 2004b). A mild impairment in letter fluency was 

evident in the most severe group, reflecting their impoverished vocabulary. 

 

Stimuli and Test Administration 

 The Cambridge picture naming test consists of 64 black-and-white line drawings from 

the Snodgrass and Vanderwart (1980) set. Half represent living and half non-living objects. 

During the test, each picture was presented individually to the patient and they were asked to 
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give its name. The item was scored as correct if they provided its name, or any of the 

acceptable alternatives listed by Woollams et al. (2008), as part of their response. 

 

Stimulus factors and data analysis 

 We focused on six factors of potential importance to object knowledge in SD. With 

the exception of typicality, all factors were based on ratings collected by Hoffman and 

Lambon Ralph (submitted) from 100 British undergraduate students. Participants in this study 

were presented with a series of object names (animals, fruits and vegetables and manmade 

objects) and were asked to rate, on a 7-point scale, (a) how familiar they were with the object 

and (b) how strongly they associated the object with experience in each of eight sensory-

motor modalities (colour, visual form, observed motion, sound, taste, smell, tactile and 

performed actions). We also used ratings of semantic typicality collected by Garrard et al. 

(2001). In this study, participants were presented with object names and asked to rate, on a 4-

point scale, whether the object was a typical example of items from its superordinate category 

(e.g., a dog is a highly typical animal and a seahorse atypical). 

 From this pool of data, we derived six factors. The first two factors, familiarity and 

typicality, were pan-modal in the sense that raters were not asked to take any particular 

modalities into account when making their judgements. We assumed, therefore, that raters 

made use of all types of information available for the concept when making these ratings. The 

third factor, sensory richness, was a composite measure of the total amount of sensory-motor 

experience associated with each object. It was calculated by taking the average of each item’s 

experience ratings across all eight modalities. The remaining three factors indexed how 

strongly each item was associated with experiences in particular sensory-motor domains. We 

created three composite measures by combining ratings from closely-related modalities. The 

decision to group modalities in this way was guided by a previous study in which we 
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performed a principal components analysis on the ratings for 156 objects (Hoffman and 

Lambon Ralph, submitted). This analysis indicated that the eight modalities collapsed into 

four distinct factors, with two modalities loading heavily on each factor: 

Factor 1: taste and smell 

Factor 2: sound and motion 

Factor 3: colour and visual form 

Factor 4: tactile and action 

These groupings capture a number of intuitive assumptions about modality correlations. For 

example, items with distinctive smells can often be eaten and objects that move (principally 

animals and vehicles) usually make sounds. For the present study, we discarded the taste and 

smell factor because these modalities are irrelevant for the majority of objects. The other 

modalities were used to construct the final three factors in the following manner: 

1. Colour/form value of the object, calculated by averaging its ratings for colour 

experience and visual form experience.  

2. Sound/motion value of the object, calculated by averaging its ratings for sound 

experience and experience of observed motion.  

3. Tactile/action value of the object, calculated by averaging its ratings for tactile 

experience and action experience. 

This approach for grouping modalities also aligns with the presumed neuroanatomical 

correlates of each modality. Colour and visual form information are both thought to be 

underpinned by posterior fusiform areas that form part of the ventral visual stream (Chao et 

al. , 1999, Martin et al. , 1995, Thompson-Schill et al. , 1999). Motion characteristics are 

associated with a different locus of activation in the posterior middle temporal gyrus 

(Beauchamp et al. , 2002), which is close to the superior temporal region activated during 

processing of the auditory properties of objects (Kiefer et al. , 2008, Lewis et al. , 2004). 
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Finally, tactile information and knowledge of the actions associated with objects are thought 

to be stored in more dorsal parietal and frontal sites (Buxbaum and Saffran, 2002, Goldberg 

et al. , 2006, Ishibashi et al. , 2011, Kellenbach et al. , 2003). 

 To assess the effect of each of these factors on conceptual knowledge in SD, we 

constructed twelve subsets of sixteen items, all taken from the pool of 64 items in the naming 

test. The subsets were arranged in six pairs, with each pair manipulating one of the factors 

while being matched as closely as possible on the other five. The properties of each subset 

are shown in Table 3. Note that each pair differed significantly on exactly one of the six 

factors. In addition, none of the pairs differed in log word frequency (taken from the CELEX 

database; Baayen et al. , 1993) and each subset contained an equal number of living and non-

living things. The items in each subset are listed in the Supplementary Materials. 

 

Results 

 Data from each stimulus manipulation were analysed separately. Results from each 

manipulation were subjected to a 2 × 3 mixed ANOVA that included the manipulated 

variable as a within-subjects factor and severity as a between-subjects factor. As expected, 

the main effect of severity was highly significant in every analysis. Therefore, we report only 

main effects of the manipulated stimulus factors and their interactions with severity. Post-hoc 

t-tests were used to explore the significance of effects at each level of severity. 

 Familiarity: Naming performance for high and low familiarity items is shown in the 

left-hand panel of Figure 1. Highly familiar items were named much more successfully than 

less familiar items, which was confirmed by the significant main effect of familiarity in the 2 

× 3 ANOVA (F(1, 40) = 105, p < 0.001). There was also a significant interaction between 

familiarity and severity (F(2, 40) = 8.09, p = 0.001). T-tests indicated that the familiarity 

effect was highly significant at every level of severity (t > 4.42, p < 0.002). However, it was 
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smallest in the severe group, presumably reflecting a slight floor effect in the most severe 

patients. 

 Typicality: Results for the high and low typicality sets are shown in the centre of 

Figure 1. Highly typical items were more likely to be named than less typical ones (F(1, 40) 

= 31.5, p < 0.001) and this effect did not interact with severity (F(2, 40) < 1). The effect was 

highly significant in every severity group (t > 3.11, p < 0.009). 

 Sensory richness: Results for the overall richness across all sensory modalities are 

presented in the right-hand panel of Figure 1. Patients were more accurate at naming objects 

with high sensory richness (F(1, 40) = 31.5, p < 0.001). This factor did not interact with 

severity (F(2, 40) < 1) and was highly significant at every stage of the disease (t > 4.41, p < 

0.002). 

 Colour/form: Figure 2 shows the manipulations of representation in particular sensory 

modalities (colour/form in the left-hand panel). In contrast to the results for overall sensory 

richness, items that had strong colour and form characteristics were named more poorly than 

matched items with weaker colour/form ratings (F(1, 40) = 16.8, p < 0.001). However, this 

effect was qualified by a significant interaction (F(2, 40) = 4.18, p = 0.022). T-tests indicated 

that colour/form had no effect on naming in the mildest patients (t = 0.18, p = 0.86), a modest 

effect on the moderate patients (t = 2.58, p = 0.022) and the strongest effect on the most 

severe patients (t = 4.60, p < 0.001).  

 Sound/motion: The effect of the sound/motion manipulation (middle panel of Figure 

2) mirrored that of overall sensory richness. Items that were high in sound/motion 

information were named more successfully (F(1, 40) = 91.3, p < 0.001). There was no 

interaction with severity (F(2, 40) < 1) and the effect was highly significant in all three 

groups (t > 3.57, p < 0.004). 
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 Tactile/action: Finally, the manipulation of tactile/action qualities is shown in the 

right-hand panel of Figure 2. The effect of this manipulation was significant (F(1, 40) = 18.7, 

p < 0.001), indicating a naming advantage for items rated strongly for tactile/action 

knowledge. There was no interaction with severity (F(2, 40) = 1.04, p = 0.36); however, 

when the three groups were considered separately, the effect only reached significance in the 

moderate (t = 2.28, p = 0.038) and severe (t = 5.00, p < 0.001) groups. 

 

Are high colour/form items more difficult to name? 

 Analysis of picture naming results indicated that highly familiar and typical items 

were more likely to be named correctly at all stages of the disorder and that high sensory 

richness also benefited naming. This richness advantage was also apparent for sound/motion 

and tactile/action modalities when these domains were studied separately. Conversely, no 

advantage was observed for items with rich colour/form characteristics; in fact, richness in 

this domain had a negative effect on performance in the more severe patients. This result 

supports the idea that representations of visual attributes are particularly affected later the 

disorder. However, another possibility is that high colour/form items were simply more 

difficult to name, perhaps because colour plays an important role in their identification and 

this information was absent from the black-and-white drawings used. To rule out this 

possibility, we turned to reaction time data collected from seventeen healthy subjects (mean 

age = 22) who named the same line drawings. Pictures were presented on a 15-inch computer 

monitor and participants were asked to name each picture as quickly as possible. No time 

limit was placed on responses. Reaction times were recorded using an electronic voice-key, 

with responses scored online and digitally recorded for later verification. If high colour/form 

items were more difficult to name, one would expect these items to be named more slowly by 

healthy participants. In fact, the opposite was observed. Reaction times for high colour/form 
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items (M = 848ms) were considerably faster than those for low colour/form items (M = 

991ms) and this difference was highly significant (t(16) = 6.73, p < 0.001). Error rates were 

very low and did not differ between the two conditions. This result confirms that high 

colour/form items are intrinsically easier to name in the healthy population, making the 

significant disadvantage for these items in the severe SD cases all the more striking. Indeed, 

the reaction time advantage for high colour/form items in healthy subjects contrasts with the 

lack of any such advantage in the mild SD group, suggesting that some subtle impairment to 

visual attributes may be present even at an early stage. 

  

Discussion 

 Though there is no doubt that SD patients present with selective conceptual 

knowledge deficits, the underlying cause of this impairment remains a subject of active 

debate. Some researchers hold that the deficit primarily reflects damage to a pan-modal hub, 

which develops representations that are independent of any particular sensory modality and 

license the formation of coherent concepts (Lambon Ralph et al. , 2010, Patterson et al. , 

2007). Others propose that deficits in SD are primarily due to disruption to areas of the cortex 

that are specifically implicated in representing the visual characteristics of objects (Bonner et 

al. , 2009, Breedin et al. , 1994, Macoir, 2009). We investigated these two possibilities by 

exploring the impact of pan-modal and modality-specific stimulus factors on conceptual 

knowledge in SD. Naming was strongly influenced by pan-modal factors. Patients were more 

likely to name items that were highly familiar and highly typical of their class. We also found 

an advantage for concepts with high overall sensory richness, which was also observed in two 

specific modalities. Items were more likely to be named correctly if were rich in 

sound/motion or tactile/action characteristics. In contrast to all the other factors, a different 

pattern emerged for items rich in visual colour/form information. There was no advantage for 
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these concepts and, in the more severe patients, such items were instead disproportionately 

impaired. 

 How are these findings best reconciled with the theories of SD described above? We 

propose that the full pattern of results is best explained through a combination of continually 

increasing atrophy to pan-modal representations and later damage to visual-specific areas of 

cortex. Specifically, we suggest that the initial cause of knowledge impairment is damage to 

the pan-modal representations stored in the ventrolateral, anterior temporal lobes. This 

remains the primary cause of impairment throughout the progression of the disease, since 

atrophy remains centred on the same anterior region, explaining the large effects of pan-

modal factors at all stages of severity. As the disease becomes more severe, however, 

additional impairments begin to emerge for concepts that rely heavily on visual 

characteristics. These are most likely to reflect the later spread of atrophy, which begins to 

envelop the posterior ventral temporal lobes (Bright et al. , 2008, Rohrer et al. , 2009), which 

are specialised for processing the visual features of objects (Chao et al. , 1999, Martin et al. , 

1995, Thompson-Schill et al. , 1999).  

 We will consider the evidence for pan-modal degradation first. As discussed in the 

Introduction, conceptual knowledge in SD is lost for information presented in all sensory 

modalities and for all categories of object (Bozeat et al. , 2000, Patterson et al. , 2007). This 

pattern is unlikely to occur as a result of damage to a single, modality-specific system. 

Instead, the hub-and-spoke theory holds that the ventrolateral ATL-centred atrophy in SD 

affects all types of concepts because it damages central modality-invariant representations 

(Lambon Ralph et al. , 2010, Patterson et al. , 2007, Pobric et al. , 2010a). These 

representations are learned through the co-activation of information in different sensory-

motor modalities but are themselves independent of any particular modality (Rogers et al. , 

2004a). Damage to these representations consequently affects all concepts, regardless of 
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which particular modalities they are associated with. Neuroimaging evidence indicates that 

these representations are primarily underpinned by the ventrolateral anterior temporal lobes 

(centred on the anterior fusiform and inferior temporal gyri). This region is activated by a 

range of semantic processing tasks, including understanding of spoken words (Sharp et al. , 

2004), comprehension of concrete and abstract written words (Binney et al. , 2010), 

classification of objects presented as words, pictures and environmental sounds (Visser and 

Lambon Ralph, 2011) and judgments of semantic association for word and picture stimuli 

(Visser et al. , 2012). In line with this evidence, a recent study of SD patients found that the 

degree of hypometabolism in the anterior fusiform correlated with their performance on tests 

of conceptual knowledge (Mion et al. , 2010). Hypometabolism in other regions was not 

related to semantic performance, even though the entire anterior temporal lobe, including the 

pole, was markedly hypometabolic. This study, taken with the converging evidence from 

functional neuroimaging in neurologically-intact participants, helps to pinpoint the anterior 

fusiform as the centre-point of the pan-modal “hub” cortex. 

  Consistent with the hub-and-spoke theory, in the present study we found that two pan-

modal stimulus factors, familiarity and typicality, had strong effects on naming in SD, at all 

stages of disease severity. These effects have been reported previously in SD patients 

(Lambon Ralph et al. , 1998, Woollams et al. , 2008) and are consistent with breakdown in 

modality-invariant conceptual knowledge. The representations of highly familiar concepts are 

more strongly instantiated because the system has more opportunities to acquire their 

meanings. They also tend to be acquired earlier in life and to be encountered more often 

during the disease process, which may contribute to their relative preservation in the face of 

the progressive representational degradation (see Jefferies et al. , 2011, Lambon Ralph et al. , 

1998). This phenomenon has been formally simulated in computational models that employ a 

layer of modality-independent processing units to capture conceptual structure. These 
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simulations indicate that more familiar concepts come to occupy a larger portion of the  

semantic space formed by the modality-independent layer, providing them with a greater 

robustness to damage (Simulation 5.4; Rogers and McClelland, 2004). Highly typical items 

may be preserved for similar reasons – typical exemplars, by definition, are similar in 

meaning and share many attributes in common. This means that, during development, 

learning about one typical exemplar will also boost the representations of other overlapping 

concepts within that semantic cohort. In comparison, atypical concepts do not overlap with as 

many other items and thus do not benefit from this same type of collateral boost. 

 We found that overall sensory richness, based on an item’s average ratings of 

association with all sensory-motor modalities, was positively related to the level of remaining 

item knowledge in the SD cases. Concepts that were associated with a rich set of sensory-

motor information were more likely to be named correctly, even though they were matched to 

less rich concepts in terms of familiarity and typicality. This positive effect supports the idea 

that rich sources of information about a concept lead to a strong representation that is 

relatively robust to damage (Plaut and Shallice, 1993). Words associated with richer semantic 

representations are also processed more efficiently by healthy subjects in a range of tasks 

(Pexman et al. , 2008). Similarly, we found that, within the domain of concrete objects, 

weaker sensory-motor information was associated with poorer object knowledge at all stages 

of SD. Extrapolating from this trend, one would expect abstract concepts, associated with 

more impoverished sensory-motor information, to be even more susceptible to damage. Case-

series investigations suggest that this is indeed the case for the majority of SD patients 

(Hoffman and Lambon Ralph, 2011, Jefferies et al. , 2009). In a small number of cases, the 

reverse pattern has been observed (e.g., Breedin et al. , 1994, Macoir, 2009, Warrington, 

1975) though these effects may be due to individual differences in the location of cortical 
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atrophy or in premorbid experience (Hoffman and Lambon Ralph, 2011, Jefferies et al. , 

2011). 

 In contrast to the positive overall effect of rich sensory-motor information, there was 

no advantage associated with strong visual colour/form characteristics. Instead, items with 

strong colour/form ratings were named more poorly than matched items for which such 

visual information was less prominent. This effect was not present in the mildest cases but 

was apparent, with increasing magnitude, in the moderate and severe cases. This finding fits 

with previous investigations which found that, within the context of generally impoverished 

feature knowledge, SD patients were especially poor at reporting visual attributes (Breedin et 

al. , 1994, Lambon Ralph et al. , 1999, Lambon Ralph et al. , 2003, Tyler and Moss, 1998). 

Before turning to our preferred interpretation of these findings, there are a couple of 

alternative possibilities to address. The representations of living things are often thought to be 

more strongly dependent on visual information than those of manmade objects (Farah and 

McClelland, 1991, Warrington and Shallice, 1984), raising the possibility of a semantic 

category effect underpinning the observed reversed effect of visual-colour richness. However, 

the present results cannot be interpreted as a category effect because our high and low 

colour/form sets contained equal numbers of living and non-living items. Indeed, 

dissociations between living and non-living items are rare in SD (Lambon Ralph et al. , 

2007). Nor was it the case that high colour/form items were intrinsically more difficult to 

name, because healthy subjects showed a processing advantage for these items. Instead, these 

results suggest that objects that are strongly associated with visual information are 

disproportionately impaired in the more severe stages of SD, in line with damage to visual 

association cortex. 

 This view is also consistent with the known progression of cerebral atrophy in SD. 

Representations of colour and visual form are associated with the posterior, ventral temporal 
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lobe, particularly the posterior fusiform gyrus (Chao et al. , 1999, Martin, 2007). Importantly, 

this region appears to be involved in conceptual knowledge of visual object properties, and 

not merely processing of visual input, because it is activated when visual property knowledge 

is probed verbally (Kellenbach et al. , 2001, Thompson-Schill et al. , 1999). The ventral, 

posterior temporal lobe is typically spared in the early stages of SD, in which the damage 

principally affects the temporal poles and the ventrolateral surface of the anterior temporal 

lobes (evident in terms of atrophy, hypometabolism and reduced connectivity; Acosta-

Cabronero et al. , 2011, Galantucci et al. , 2011, Galton et al. , 2001, Nestor et al. , 2006) As 

the disease progresses, atrophy in these regions increases. In addition, cortical thickness 

measures and voxel-based morphometry indicate that the increasing atrophy begins to 

envelop posterior ventral temporal regions (Bright et al. , 2008, Rohrer et al. , 2009). This 

posterior spread of atrophy could be expected to disproportionately affect concepts that rely 

heavily on the visual attribute information assumed to be coded by the region. In contrast, the 

posterior middle and superior temporal gyri, associated with sound and motion 

characteristics, are less severely affected as atrophy spreads, as are the parietal and frontal 

sites associated with tactile information and knowledge of object manipulation.  

 In the present study, we probed conceptual knowledge through picture naming, 

because this task is reliably impaired at all stages of the disorder and because it is clear that 

anomia in SD is the consequence of core conceptual deterioration and not a visually-specific 

deficit. The use of pictures raises an important question, however: is the visual spoke region 

solely a representational area, concerned with representing object properties that are usually 

experienced through vision, or is it directly involved in the perceptual identification of 

visually-presented objects? This distinction has sometimes caused confusion in discussion of 

modality-specific semantic systems (Coltheart et al. , 1998). In our view, however, these two 

positions are difficult to disentangle. Identification of objects from vision relies very heavily 
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on having intact semantic knowledge of how objects usually appear. Similarly, identifying an 

object from its sound depends critically on an intact representation of the object’s auditory 

properties. So if we assume that the visual spoke region codes the typical visual 

characteristics of giraffes, for example, then it follows that this region (in concert with the 

hub) will make a critical contribution when someone is asked to identify a picture of a 

giraffe. The important point from our perspective is that spoke regions contribute to 

conceptual knowledge even when the modality of input does not match the modality of the 

probed knowledge. Posterior, ventral fusiform activation has been demonstrated, for example, 

when visual object properties are probed verbally (Kellenbach et al. , 2001, Thompson-Schill 

et al. , 1999); inferior parietal regions associated with action knowledge are activated when 

object manipulation judgements are made in response to static pictures (Van Dam et al. , in 

press); and superior temporal regions linked to auditory knowledge are activated when the 

names of sound-making objects are presented as written words (Kiefer et al. , 2008). It seems 

likely, therefore, each spoke region contributes to semantic processing whenever attributes in 

its modality are relevant to the task in hand, irrespective of the modality of the sensory input. 

 To summarise, our investigation of the factors underpinning impairment of object 

knowledge in SD supports a multi-component model, which is consistent with the known 

progression of cortical atrophy in the disorder. Based on the hub-and-spoke theory of 

conceptual knowledge, we propose that atrophy to the ventrolateral anterior temporal lobes, 

present from the earliest stages of neurodegeneration, affects transmodal ‘hub’ 

representations that are independent of any particular sensory-motor modality. This results in 

a pan-modal, pan-categorical knowledge deficit which remains the principal feature 

throughout the disorder as the severity of atrophy in this region increases. . Later in the 

disorder, the boundary of atrophy extends into the posterior ventral temporal lobes, affecting 

a modality-specific “spoke” region that codes the visual attributes of objects. This later 
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damage begins to disproportionately affect concepts that rely heavily on this source of 

information. By positing a multi-component explanation, this approach has the potential to 

reconcile the differing viewpoints on the functional basis of conceptual impairment in SD. 
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Table 1: Mean test scores for each group 

Test/factor Max Mild Moderate Severe Healthy 

Controls 

  Mean           N Mean N Mean N Mean (cut-

off) 

Age -- 62 14 64 15 68 14  

Education (leaving age) -- 15.8 14 15.5 15 16.3 14  

Picture Naming 64 43 14 22 14 9 14 62.3 (59) 

Category fluency (6 categories) -- 48 7 26 11 17 9 95.7 (62) 

Word-Picture Matching 64 55 12 41 13 31 13 63.8 (62) 

Camel and Cactus test (pictures) 64 45 8 31 10 32 9 59.1 (51) 

Letter fluency (FAS) -- 19 7 21 11 17 9 41.1 (17) 

MMSE 30 27 7 25 9 21 8 28.8 (24) 

Digit span forwards -- 6.5 8 6.3 12 5.3 10 6.8 (4) 

Digit span backwards -- 4.8 8 4.3 12 4.4 9 4.8 (3) 

Raven’s progressive matrices 36 33 7 28 11 30 10  

Rey figure copy 36 35 8 29 12 33 10 34.0 (31) 

VOSP: incomplete letters 20 19.3 7 16.9 11 15.0 10 18.8 (16) 

VOSP: object decision 20 17.0 7 13.6 11 13.9 10 17.7 (14) 

VOSP: number location 10 9.7 7 9.5 11 9.5 10 9.4 (7) 

VOSP: cube analysis 10 9.6 7 9.3 11 8.5 10 9.2 (6) 

Impaired scores are shown in bold (below published cut-offs or greater than two standard deviations below 

the mean in healthy subjects). Numbers in italics indicate the number of observations contributing to each 

mean.
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Table 2: Mean (standard deviation) properties of each stimulus set 

Manipulation Item 

set 

Familiarity Typicality Sensory 

richness 

Colour and form Sound and motion Tactile and action Log word frequency 

Familiarity High 6.52 (.33) 3.10 (.57) 4.08 (.58) 5.73 (.78) 3.95 (1.49) 4.07 (.66) 1.34 (.38) 

 Low 5.27 (.45) 2.96 (.76) 3.85 (.38) 5.48 (.55) 4.79 (1.19) 3.80 (.83) 1.14 (.43) 

Typicality High 6.04 (.75) 3.55 (.23) 4.00 (.48) 5.54 (.74) 4.49 (1.38) 3.88 (.81) 1.07 (.41) 

 Low 5.96 (.56) 2.13 (.67) 3.95 (.53) 5.84 (.75) 3.76 (1.35) 3.92 (.84) 1.00 (.41) 

Sensory richness High 6.11 (.58) 2.97 (.88) 4.33 (.39) 5.80 (.76) 4.62 (1.59) 4.13 (.67) 1.34 (.46) 

 Low 5.89 (.78) 2.91 (.84) 3.62 (.31) 5.65 (.67) 3.90 (1.01) 3.68 (.89) 1.21 (.33) 

Colour/form High 5.94 (.77) 3.06 (.73) 4.03 (.51) 5.94 (.59) 4.40 (1.04) 3.84 (.80) 1.16 (.51) 

 Low 5.84 (.80) 3.06 (.73) 3.77 (.44) 5.25 (.53) 4.53 (1.26) 3.79 (.81) 1.18 (.47) 

Sound/motion High 5.90 (.74) 2.88 (1.0) 4.04 (.41) 5.51 (.71) 5.32 (.70) 3.75 (.89) 1.15 (.43) 

 Low 6.03 (.77) 2.83 (.87) 3.78 (.68) 5.70 (.72) 3.07 (.64) 3.96 (.84) 1.11 (.44) 

Tactile/action High 6.15 (.75) 3.03 (.78) 4.12 (.36) 5.57 (.65) 4.40 (1.23) 4.55 (.63) 1.29 (.59) 

 Low 6.02 (.59) 2.89 (.81) 3.91 (.61) 5.63 (.79) 4.38 (1.32) 3.53 (.65) 1.09 (.40) 

High and low values shown in bold differed significantly from each other (p < 0.005). No other pairs differed significantly (p > 0.09). 
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Figure 1: Manipulations of familiarity, typicality and sensory richness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

** indicates high and low conditions differ at p < 0.01. Bars indicate one standard error of mean.  
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Figure 2: Manipulations of richness in particular sensory modalities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* indicates high and low conditions differ at p < 0.05. ** indicates p < 0.01. 
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Supplementary Table: Neuropsychological test scores for individual patients 

Test/item Max DF MT JW MB SJ BS NH PL EK KI GE GT PW TM JT PD 

Naming observations  5 4 2 4 3 3 5 3 3 1 2 2 3 1 1 1 

Sex  M F F F F M F F F M M M M M M F 

Age  62 60 62 60 59 68 64 72 59 65 50 70 73 66 66 72 

Education (leaving age)  16 16 16 15 16 16 16 15 15 14 16 14 17 24 16 14 

Picture Naming 64 55 46 43 36 30 29 26 22 19 15 13 11 8 7 6 4 

Word-Picture Matching 64 60 57 61 47 59 40 37 44 45 36 32 32 35 50 34 17 

Camel and Cactus test (pictures) 64 53 45 49 41 51 37 41 30 33 20 32 27 34 51 31 17 

Category fluency (6 categories)  57 65 53 45 31 45 30 26 31 27 22 24 22 NT 9 7 

Letter fluency (FAS)  13 30 19 20 23 33 14 24 29 17 19 24 13 NT 17 22 

MMSE 30 26 29 29 27 23 25 NT 23 27 23 NT 26 23 NT 25 13 

Digit span forwards  7 7 6 6 5 8 5 8 6 8 7 6 5 3 8 7 

Digit span backwards  4 5 6 6 3 4 4 5 7 5 4 7 4 NT 4 5 

Raven’s progressive matrices 36 34 35 32 32 34 30 20 31 33 21 33 35 34 29 36 25 

Rey figure copy 36 36 36 34 33 33 33 26 31 34 34 35 34 34 31 31 36 

VOSP: incomplete letters 20 19 20 19 20 20 19 18 19 20 8 18 18 16 18 18 3 

VOSP: object decision 20 20 20 12 18 16 18 15 15 12 15 13 12 18 19 15 6 

VOSP: number location 10 10 10 8 10 10 10 10 7 10 10 9 10 10 8 9 9 

VOSP: cube analysis 10 10 10 10 9 10 10 9 9 10 10 10 10 10 8 10 5 

NT = Not tested. Bold indicates impaired scores. 
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Items in each stimulus set 

 

High 

familiarity 

 Low 

familiarity 

  High typicality  Low typicality  

Item Value Item Value  Item Value Item Value 

bicycle 6.7 basket 5.9  brush 3.5 candle 2.3 

brush 6.9 camel 5.1  bus 3.9 cherry 3.2 

candle 6.6 eagle 4.9  comb 3.3 elephant 3.1 

cat 6.9 frog 5.1  duck 3.5 frog 1.7 

chicken 6.4 hammer 5.6  eagle 3.4 paintbrush 2.5 

comb 6.5 helicopter 5.3  hammer 3.8 penguin 1.2 

duck 6.1 horse 6.0  lorry 3.7 piano 1.6 

dustbin 6.5 lorry 5.4  motorbike 3.3 pineapple 2.2 

elephant 5.9 monkey 5.0  owl 3.6 plane 2.6 

key 6.9 mouse 5.1  pear 3.8 sledge 1.2 

pineapple 6.3 owl 4.7  rabbit 3.5 squirrel 3.1 

plane 6.6 piano 6.3  screwdriver 3.8 stool 2.7 

plug 6.8 pliers 4.7  strawberry 3.8 suitcase 1.9 

rabbit 6.6 saw 5.4  swan 3.4 tomato 1.8 

swan 6.0 spanner 5.1  tiger 3.2 tortoise 1.4 

tomato 6.8 tiger 5.1  toaster 3.4 watering can 1.6 

 

High sensory 

richness 

 Low sensory 

richness 

  High 

colour/form 

 Low 

colour/form 

 

Item Value Item Value  Item Value Item Value 

bus 4.3 barrel 2.9  bus 5.7 bicycle 4.7 

candle 4.0 bicycle 3.8  camel 6.5 brush 4.9 

cherry 4.7 brush 3.5  candle 5.4 cat 5.4 

chicken 5.2 camel 4.0  chicken 6.2 comb 5.0 

duck 4.4 comb 3.4  cow 6.3 duck 6.0 

elephant 4.3 eagle 3.4  elephant 6.7 eagle 5.3 

frog 4.1 key 3.8  hammer 5.2 lorry 4.7 

glass 3.9 mouse 4.0  key 5.7 motorbike 4.4 

hammer 4.0 penguin 3.7  peacock 6.4 mouse 6.0 

helicopter 3.9 plug 3.4  penguin 6.5 ostrich 5.6 

horse 4.7 rabbit 3.9  scissors 5.5 pliers 5.0 

lorry 3.8 screwdriver 3.5  spanner 5.5 rabbit 5.3 

motorbike 4.3 squirrel 3.5  stool 5.2 squirrel 6.0 

piano 4.3 suitcase 3.4  swan 6.8 suitcase 4.8 

pineapple 4.9 swan 3.8  tiger 6.4 tortoise 6.0 

tomato 4.6 tiger 4.0  toaster 5.3 train 5.1 
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High 

sound/motion 

 Low 

sound/motion 

  High 

tactile/action 

 Low 

tactile/action 

 

Item Value Item Value  Item Value Item Value 

bicycle 4.8 apple 2.9  bicycle 4.7 brush 4.1 

bus 5.8 basket 2.0  camel 3.5 chicken 3.9 

cat 6.2 cherry 2.1  cat 4.9 cow 3.8 

cow 5.5 dustbin 2.3  cherry 4.1 duck 3.0 

duck 5.8 envelope 2.8  dog 5.0 dustbin 3.4 

eagle 4.9 glass 3.3  envelope 4.7 elephant 3.3 

frog 5.5 orange 2.8  frog 3.5 helicopter 3.4 

helicopter 6.0 ostrich 3.3  glass 5.3 motorbike 4.1 

lorry 5.6 peacock 3.7  horse 5.0 penguin 2.4 

motorbike 6.4 rabbit 4.1  mouse 3.4 plug 4.3 

owl 5.7 screwdriver 3.2  paintbrush 5.4 squirrel 2.6 

penguin 4.8 squirrel 4.2  piano 5.1 stool 4.2 

piano 5.5 stool 2.5  rabbit 4.4 suitcase 4.1 

scissors 4.4 suitcase 3.3  saw 4.5 swan 2.9 

sledge 4.0 tortoise 3.5  scissors 4.9 toaster 4.3 

swan 4.5 watering can 3.2  spanner 4.7 tortoise 2.9 

 

 


