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Summary 
The host immune system functions constantly to maintain chronic commensal and pathogenic organisms in 
check. The consequences of these immune responses on host physiology are as yet unexplored, and may have 
long-term implications in health and disease. We show that chronic viral infection increases epithelial turnover 
in multiple tissues, and the antiviral cytokines type I interferons (IFNs) mediate this response. Using a murine 
model with persistently elevated type I IFNs in the absence of exogenous viral infection, the Irgm1−/− mouse, we 
demonstrate that type I IFNs act through nonepithelial cells, including macrophages, to promote increased 
epithelial turnover and wound repair. Downstream of type I IFN signaling, the highly related IFN-stimulated 
genes Apolipoprotein L9a and b activate epithelial proliferation through ERK activation. Our findings 
demonstrate that the host immune response to chronic viral infection has systemic effects on epithelial turnover 
through a myeloid-epithelial circuit. 
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Introduction 
Epithelial cells create lining and duct structures that are associated with many organs in the body (Blanpain 
et al., 2007). One major function of these structures is to provide a first-line barrier against the environment 
(Ashida et al., 2012). A central component of this protection is cellular turnover, a highly regulated process of 
shedding and regeneration of differentiated cells that at the same time maintains barrier integrity. Loss of 
balance in this process results in the eventual loss of barrier function. This concept is most obvious in the 
intestine, which normally has a high epithelial turnover rate (Kuhnert et al., 2004, Lee et al., 2009). 
At homeostasis, each distinct epithelial structure has a different rate of turnover, but the determinants of these 
unique rates are poorly understood (Pellettieri and Sánchez Alvarado, 2007). 

Turnover rates must also be capable of modulation in response to injury so that wound repair can efficiently 
occur. Damaged epithelial cells must be shed and rapidly replaced with new cells generated by self-renewing 
stem cells (Blanpain et al., 2007). Examples of damage that can alter turnover rates include irradiation, 
malnutrition, and bacterial and parasitic infection (Cliffe et al., 2005, Creamer, 1967, Luperchio and Schauer, 
2001, Rijke et al., 1975). 

The microbiome of the host is a key component of the environment that is involved in homeostasis and injury 
response (Packey and Ciorba, 2010, Pfefferle and Renz, 2014, Scales and Huffnagle, 2013). The virome is a 
relatively unexplored component of the microbiome and is the complex collection of chronic viruses within a 
given host (Virgin, 2014, Virgin et al., 2009). The role of these chronic viral infections in epithelial cellular 
turnover has not been previously addressed. 

Type I interferons (IFNs) are a candidate for mediating systemic alterations in response to viruses. They are a 
family of innate immune cytokines that are produced as a result of viral and other infections (Müller et al., 
1994). They include multiple IFNαs, IFNβ, and other subtypes (Pestka et al., 2004). Once expressed and secreted 
from the cell, type I IFNs all bind to a common type I IFN receptor, IFNAR, which is expressed on most cell types 
(de Weerd et al., 2007). Despite sharing a single receptor, type I IFNs can have different cellular effects 
depending on the IFN subtype, the cell type, and the context (i.e., additional cytokine signals) (Ivashkiv and 
Donlin, 2014, Thomas et al., 2011). Upon ligand binding, Janus kinases that are constitutively associated with 



IFNAR phosphorylate the receptor and the signaling transducers and activators of transcription (STATs) 
molecules (de Weerd et al., 2007). Upon phosphorylation, STATs form complexes that translocate to the nucleus 
to induce the expression of hundreds of IFN-stimulated genes (ISGs). 

ISGs can be involved in a plethora of cellular processes including apoptosis, transcriptional activation and 
repression, modulation of immune cells and cytokine expression, protein degradation, and posttranscriptional 
regulation of gene expression (de Veer et al., 2001). However, the functions of many ISGs are yet to be 
discovered, as it is difficult to use viral infection models to distinguish the effects of type I IFNs and ISGs on host 
physiology from the effects of viral infection itself. To definitively show that type I IFNs mediate an effect, loss-
of-function studies are required, but deficiency of type I IFNs during viral infection typically results in unhindered 
viral replication, alterations in the immune response, and significant morbidity and mortality. For example, loss 
of type I IFN signaling during infection with murine homologs of ubiquitous chronic viruses such 
as herpesvirus and cytomegalovirus (CMV) results in increased viral titers and mortality (Barton et al., 
2005, Chong et al., 1983, Dutia et al., 1999). Here we used two in vivo models to study the impact of type I IFNs 
on host physiology: (i) the Irgm1−/− mouse, which we found has persistently elevated type I IFNs in the absence 
of pathogenic viral infection, and (ii) injection of polyinosinic:polycytidylic acid (polyI:C), a synthetic double-
stranded RNA that stimulates type I IFN induction. We showed that chronic viral infection promoted epithelial 
turnover in multiple organs. We then demonstrated that type I IFN signaling through macrophages promoted 
epithelial proliferation and enhanced injury repair via the ISGs Apolipoprotein L9a and b. 

Results 
Chronic Viral Infection Promoted Turnover of Multiple Epithelial Organs 
To test the role of chronic viral infection in the modulation of epithelial turnover, we infected C57BL/6 wild-type 
(WT) mice with murine CMV (MCMV), a DNA herpesvirus homologous to highly prevalent human CMV (Virgin 
et al., 2009). Seven days postinfection with MCMV (commencement of the chronic phase) (Munks et al., 2006), 
we observed increased epithelial cell proliferation and cell death within normally low-turnover organs (i.e., 
kidney, liver, salivary gland, and pancreas; Figures 1A–1C) (Pellettieri and Sánchez Alvarado, 2007). The 
continued local presence of infectious virus was not required for increased turnover, as only the salivary gland 
had detectable titers at this time, consistent with the known kinetics of MCMV in C57BL/6 mice (Figure S1A 
available online) (Munks et al., 2006, Sumaria et al., 2009). A homolog of chronic human herpesvirus, murine 
gammaherpesvirus 68 (MHV68; Virgin et al., 2009), also promoted epithelial proliferation 16 days postinfection 
in the absence of detectable titers in target tissues (Figures S1B and S1C). At this time point, MHV68 is entering 
its chronic latent phase (Tibbetts et al., 2003). However, in the small intestine, we found that while MCMV 
stimulated an increase in proliferation (Figures 1D and 1E), infection with MHV68 or a persistent strain of 
enteric murine norovirus (Nice et al., 2013) did not (Figures S1D–S1G). These results suggested that certain 
chronic viral infections can promote epithelial turnover in multiple organs. 



 
Figure 1. MCMV Infection Promoted Epithelial Turnover in Multiple Organs 

(A) Representative immunohistochemistry for Ki67 in kidney, liver, salivary gland (SG), and exocrine pancreas of 
mock-infected mice or mice infected with 5×104 pfu MCMV (Smith strain), 7 days (d7) after i.p. infection. 
Blue bars, 100 μm; red bars, 50 μm. Black boxes indicate insets (right-most column). Black arrowheads show 
examples of enumerated Ki67+ epithelial cells. 

(B and C) Graph of the average number ± SEM of (B) Ki67+ epithelial cells per high-power field (hpf; 400×) and 
(C) TUNEL+ bodies/hpf relative to mock-infected animals. For (B), approximately 25 hpfs were quantified per 
organ, and only epithelial cells were counted, and for (C), approximately 50 hpfs per organ were quantified. 

(D and E) Graph of (D) average crypt height and (E) average number of mitotic figures ± SEM of 100 crypts in 
mock- and MCMV-infected mice. Lengths of crypts were measured from histological slides using ImageJ 
software. Mitotic figures were counted manually. For (B)–(E), mock-infected n = 6 mice, MCMV-infected n = 
5 mice from two independent experiments (ind. expts.). ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001 by 
Student’s t test for each organ. See also Figure S1. 

Mice Deficient in Irgm1 Provided a Useful Model to Study the Effects of Chronic Elevated 
Type I IFNs 
We hypothesized that type I IFNs induced by viral infection stimulated epithelial turnover. However, we could 
not test this hypothesis in mice lacking the type I IFN response because these cytokines are required for survival 
after infection with MCMV and MHV68 (Barton et al., 2005, Chong et al., 1983, Dutia et al., 1999). Therefore, we 
used a mouse model that we discovered has chronic elevated type I IFN levels in the absence of infection, 
the Irgm1−/− mouse. Irgm1 is a p47 GTPase initially studied for its role in host defense against 
intracellular protozoans and bacteria and in autophagy (Collazo et al., 2001, Feng et al., 2004, Liu et al., 2013). 
Previous studies showed that Irgm1−/− mice have elevated serum type II IFN (IFNγ) (King et al., 2011). 
However, Irgm1−/− mice bred in our enhanced barrier facility (Cadwell et al., 2010) did not have detectable 
serum IFNγ, and organ levels of IFNγ did not differ between WT and Irgm1−/− mice (Figure S2A). Instead, using a 
highly sensitive bioassay system (Newby et al., 2007), we found that type I IFNs were elevated in the serum of 
uninfected Irgm1−/−, but not Irgm1+/− mice. Blocking antibodies specific for the type I IFN receptor chain IFNAR1 



and a pan-anti-IFNα antibody effectively blocked the antiviral activity found in Irgm1−/− serum (Figures 2A, 2B, 
and S2B–S2D). Type I IFNs were elevated in Irgm1−/− mice from postnatal day 7 to as late as 1 year (Figures S2E 
and S2F). The increased type I IFNs were functional, as ISGs such as Oas2 and Mx2 were elevated in numerous 
tissues of Irgm1−/− mice (Figures 2C and 2D). The systemic elevation of type I IFNs in Irgm1−/− mice has not been 
previously reported, and provided us with a useful model to study the role of these cytokines on host 
physiology. 

 
Figure 2. Irgm1−/− Mice Had Elevated Functional Circulating Type I IFNs 

(A) Graph of IFN activity measured in serum using a bioassay system (described in Figure S2C). IFN activity was 
calculated using a standard curve from recombinant murine IFNαA run concomitantly with assay samples. 
WT n = 22 mice, Irgm1−/− n = 28 mice from five individual experiments. 

(B) Bars show antiviral activity of WT and Irgm1−/− serum after administration of anti-Ifnar1, anti-pan-IFNα, and 
anti-IFNβ1 antibodies during the serum bioassay. WT n = 4 mice, Irgm1−/− n = 6 mice. 

(C and D) Graphs of mean fold change ± SEM of (C) Oas2 and (D) Mx2 mRNA in Irgm1−/− tissues compared to WT 
tissues. n = 2–9 mice per genotype per organ. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗∗p < 0.0001 by Student’s t test. See 
also Figure S2. 

Type I IFNs Promoted Epithelial Proliferation and Turnover 
To determine if type I IFNs increased epithelial turnover, we compared WT, Irgm1−/−, and Irgm1−/−Ifnar−/− mice 
that lacked responsiveness to type I IFNs, but retained elevated type I IFN serum levels (Figure S3A). We found 
increased epithelial proliferation and cell death in the kidney, pancreas, liver, and salivary gland of Irgm1−/− mice, 
but not Irgm1−/−Ifnar−/− mice compared to WT mice (Figures 3A and 3B). The effects of type I IFNs were not 
global, as proliferation levels in skeletal muscle, lung alveolar cells, and thyroid gland epithelial cells 
in Irgm1−/− mice were similar to controls (Figure S3B). 



 
Figure 3. Elevated Type I IFNs in Irgm1−/− Mice Promoted Enhanced Epithelial Turnover 

(A) Quantification of the average number of Ki67+ cells/hpf ± SEM n = 6–11 mice per genotype. 
(B) Quantification of average number of TUNEL+ bodies per hpf ± SEM n = 5–10 mice per genotype. For (A) and 

(B), approximately 50 hpfs were examined per organ. For each organ, means with different letters are 
significantly different (p < 0.05) by Tukey’s multiple comparisons test. 

(C) Representative histology of small intestinal crypts of WT, Irgm1−/−, and Irgm1−/−Ifnar−/− mice. Red bar, 50 μm. 
Yellow bars delineate the height of a crypt; red arrowheads mark mitotic figures. 

(D and E) Graph of (D) average crypt height and (E) average number of mitotic figures (MF) ± SEM of 100 crypts 
in WT (n = 23 mice), Irgm1−/− (n = 18 mice), Irgm1−/−Ifnar−/− (n = 18 mice), and Ifnar−/− (n = 10 mice) compiled 
from four ind. expts. Bars with different letters have significantly different means (p < 0.05) by Tukey’s 
multiple comparisons test. 

(F) Quantification of the average number ± SEM of BrdU+ cells per crypt. Mice were injected with BrdU 1 hr 
before sacrifice. The number of immunofluorescently stained BrdU+ cells was counted over an average of 50 
crypts. WT n = 3 mice, Irgm1−/− n = 3 mice, Irgm1−/−Ifnar−/− n = 2 mice. 

(G) Graph of the average migration rate ± SEM of small intestinal epithelial cells calculated relative to WT 
controls. n = 100 villi/mouse evaluated in two-color thymidine analog experiments. WT n = 11 
mice, Irgm1−/− n = 17 mice, Irgm1−/−Ifnar−/− n = 9 mice from four ind. expts. For (F) and (G), ∗∗p < 0.01, ∗∗∗∗p < 
0.0001 by Tukey’s multiple comparisons test. See also Figure S3. 

 

We further examined the effect of type I IFNs on proliferation in the intestine, where proliferation, cell death, 
and cell migration occur in defined areas (Creamer, 1967, Potten, 1998). Irgm1−/−, but not Irgm1−/−Ifnar−/−, 
intestines showed increased epithelial proliferation compared to controls, as assessed by crypt height, and BrdU 
incorporation and mitotic figure counts (Figures 3C–3F). Increased proliferation was observed 
throughout Irgm1−/− small intestinal crypts, including regions enriched for stem cells (crypt base) and regions 
enriched for transit-amplifying cells (upper crypt) (Figure S3C). As an additional control, we found that intestinal 
epithelial proliferation in Ifnar−/− mice was not independently altered compared to WT controls (Figures 3D and 
3E). 

Turnover in the small intestine takes place, in part, via cell migration from the base of crypts that culminates 
with apoptosis and shedding of differentiated cells at the tips of villi (Creamer, 1967). Using a double-thymidine 



analog-labeling method (Mahoney et al., 2008), we found that epithelial cells migrated faster in Irgm1−/− mice 
compared to WT or Irgm1−/−Ifnar−/− mice (Figures 3G and S3D). Notably, no excess cell death of progenitor 
intestinal epithelial cells occurred in Irgm1−/− mouse crypts (Figure S3E). In addition, recombinant murine IFNαA 
did not directly induce cell death in primary intestinal epithelial progenitor cells (Miyoshi et al., 2012, Miyoshi 
and Stappenbeck, 2013) derived from WT, Ifnar−/−, and Irgm1−/− mice, despite the capacity of these cells to 
respond to type I IFNs by increasing ISG expression (Figures S3F and S3G). These results suggested that type I 
IFNs did not directly induce cell death in epithelial progenitor cells. However, it is likely that turnover-associated 
death of differentiated cells at villus tips was accelerated. 

Elevated Type I IFNs in Irgm1−/− Mice Enhanced Wound Healing 
To gauge the physiologic importance of type I IFN-driven epithelial turnover, we evaluated wound repair. We 
first administered diclofenac, a nonsteroidal anti-inflammatory drug (NSAID), which induces small intestinal 
ulcerations within 24 hr after a single i.p. dose of 60 mg/kg (Ramirez-Alcantara et al., 2009). While ulcers were 
formed in all mice after 18 hr, Irgm1−/− mice had fewer detectable intestinal ulcers compared to WT 
and Irgm1−/−Ifnar−/− mice at days 2 and 4 postinjection (Figures 4A, 4B, and S4A), indicating that Irgm1−/− mice 
healed ulcerations more rapidly than controls. We also investigated colonic repair using a biopsy injury model 
(Seno et al., 2009). In this model, wound-associated epithelial (WAE) cells migrate over the wound bed surface 
to cover the injury. The source of WAE cells are wound-adjacent crypts, and decreased epithelial cell 
proliferation in these crypts is associated with slowed and incomplete wound healing (Miyoshi et al., 2012, Seno 
et al., 2009). We observed a greater distance covered by WAE cells at day 4 postinjury in wounds 
of Irgm1−/− mice that correlated with the percentage of proliferating cells in wound-adjacent crypts (Figures 4C, 
4D, and S4B). Taken together, these findings demonstrated that elevated epithelial proliferation in response to 
type I IFNs enhanced healing after epithelial damage. 

 
Figure 4. Irgm1−/− Mice Had Accelerated Wound Healing Due to Type I IFNs 

(A) Graph of the average number ± SEM of ulcers per small intestine 18 hr, 2 days (D2), and 4 days (D4) after i.p. 
injection of 60 mg/kg diclofenac sodium salt in sterile PBS. n = 3–8 mice per genotype per day, from five ind. 
expts. ∗p < 0.05 by Tukey’s multiple comparisons test. 

(B) Representative whole mount images of formalin-fixed small intestinal wounds of WT, Irgm1−/−, 
and Irgm1−/−Ifnar−/− mice 4 days after diclofenac injection. Dotted black lines outline the wound. All images 
at 32×. 

(C) Graph of the average distance covered by WAE cells 4 days after colonic biopsy wounding. Quantification 
was performed blinded on whole mount images of formalin-fixed wounds using ImageJ software. Ten 
measurements per wound were averaged. WT n = 8 wounds in 4 mice, Irgm1−/− n = 12 wounds in 4 
mice, Irgm1−/−Ifnar−/− n = 9 wounds in 3 mice. 

(D) Representative whole mount images at 90× magnification of colonic biopsy wounds 4 days after wounding. 
Black arrows delineate the distance migrated by WAE cells. See also Figure S4. 

 



Type I IFNs Signaled through Macrophages to Promote Epithelial Proliferation 
We further extended our findings by using an additional model of type I IFN production: injection of polyI:C, a 
synthetic dsRNA (Figures S5A and S5B). Daily low-dose polyI:C injection for 4 days stimulated type I IFN 
production and increased epithelial proliferation in WT, but not Ifnar−/−, mice (Figures 5A–5F, S5A, and S5B). 
These data demonstrated that exogenous type I IFNs can increase epithelial proliferation. 

 
Figure 5. Type I IFNs Signaled through Macrophages to Indirectly Promote Epithelial Turnover 

(A and B) Graph of (A) the average crypt height and (B) average number of MF/100 crypts ± SEM in WT 
and Ifnar−/− mice injected i.p. with saline or 5 mg/kg polyI:C for 4 days. WT n = 13 mice for each 
treatment; Ifnar−/− n = 5 mice for each treatment. 

(C–F) Graphs of the average number of Ki67+ cells/hpf ± SEM relative to saline-treated mice in 
submandibular salivary gland, exocrine pancreas, liver, and kidney. WT n = 7–8 mice each 
treatment; Ifnar−/− n = 3 mice each treatment. For (A)–(F), orange bars represent saline-treated mice and 
purple bars represent polyI:C-treated mice. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001 by Tukey’s 
multiple comparisons test. 

(G) Graph of the average crypt height and the average number of MF of 100 crypts ± SEM in control (n = 9 
mice), Irgm1−/− (n = 8 mice), Irgm1−/−IfnarVC (n = 7 mice), and IfnarVC (n = 6 mice). Control mice 
were Irgm1+/+Ifnarf/f-VillinCre negative. Means with different letters are significantly different by Tukey’s 
multiple comparisons test. 

(H) Graph of the average crypt height and average number of MF/100 crypts ± SEM in control 
and IfnarLysM mice injected i.p. 5 mg/kg polyI:C for 4 days. Control: saline n = 9 mice; polyI:C n = 11 
mice. IfnarLysM: saline n = 7 mice; polyI:C n = 8 mice. Control mice were Ifnarf/f-LysMCre negative. Results 
compiled from three ind. expts. 

(I) Graph of the average crypt height and average number of MF/100 crypts ± SEM in WT mice treated with 
isotype control (saline n = 5 mice; polyI:C n = 6 mice) or anti-Ly6G (saline n = 6 mice; polyI:C n = 6 mice). 
Results compiled from two ind. expts. For (H) and (I), the averages ± SEM relative to saline-treated mice are 
shown. ∗p < 0.05, ∗∗∗∗p < 0.0001 by Student’s t test. See also Figure S5. 

 



We next tested whether type I IFNs act directly on the epithelium to promote proliferation by 
crossing Irgm1−/− mice with mice lacking Ifnar solely in the intestinal epithelium (Irgm1−/−Ifnarf/f-Villin-
Cre; Irgm1−/− IfnarVC mice; Figure S5C; el Marjou et al., 2004). Irgm1−/−IfnarVC mice had elevated levels of serum 
type I IFNs and increased intestinal epithelial proliferation comparable to Irgm1−/− mice (Figures 5G and S3A). 
This finding suggested that nonepithelial cell type(s) must be responding to type I IFNs to stimulate epithelial cell 
proliferation. We verified this finding in vitro: addition of IFNα did not directly affect proliferation of primary 
intestinal epithelial cells (Figure S5D). 

Next, to identify the cell type required for epithelial hyperproliferation in response to type I IFN, we assessed the 
effects of polyI:C injection in mice deficient in Ifnar expression in different cell types. PolyI:C treatment 
of IfnarVC mice showed augmented intestinal epithelial turnover (Figures S5E and S5F). However, polyI:C 
treatment of mice lacking Ifnar on macrophages and granulocytes (Ifnarf/f-LysM-Cre; IfnarLysM mice; Prinz et al., 
2008) did not induce epithelial proliferation to the same extent as controls (Figure 5H), even though type I IFN 
levels were induced at similar levels (Figure S5G). Endogenous LysM is highly expressed on both neutrophils and 
macrophages (Cross et al., 1988). However, neutrophil depletion did not diminish epithelial hyperproliferation 
induced by polyI:C injection, consistent with macrophages mediating this effect (Figures 5I, S5H, and S5I). 

The ISGs Apol9a/b Were Candidate Factors to Mediate Proliferation in Irgm1−/− Mice 
We next determined the factors downstream of IFN signaling that augmented epithelial turnover. Serum 
from Irgm1−/−, WT, polyI:C-treated, and saline-treated mice showed no elevation in several established pro-
proliferative factors (Figures S6A and S6B). We therefore performed microarray analysis of whole genome RNA 
of salivary gland, small intestine, and isolated colonic macrophages from Irgm1−/− and WT mice (Figure S6C). 
Apol9a and Apol9b, highly homologous apolipoproteins (98% by nBLAST analysis), were two factors with 
enhanced gene expression in Irgm1−/− mice that were also potentially secreted (Figure S6C; Table S1). These 
apolipoproteins are ISGs (Rusinova et al., 2013); however, their exact function is unknown. We verified enriched 
gene expression of Apol9a/b in Irgm1−/− mice using qRT-PCR (Figure 6A). Apol9a/b gene expression was also 
elevated in MCMV-infected tissues compared to mock-infected animals (Figure 6B). In situ hybridization for 
Apol9a showed expression in discrete foci within the salivary gland and small intestine in Irgm1−/− mice (Figures 
6C and 6D). Within these foci, most cells were positive for Apol9a, including macrophages (Figure S6D), other 
stromal cells, and epithelial cells themselves (Figures 6C and 6D, insets). 



 
Figure 6. The ISGs Apol9a and Apol9b Were Elevated in Stromal and Epithelial Cells of Irgm1−/− and MCMV-
Infected Mice 

(A) Quantification of the average expression ± SEM of Apol9a/b mRNA in Irgm1−/− small intestine, salivary gland, 
and isolated colonic macrophages relative to WT tissue as measured by qRT-PCR. n = 3 mice per genotype. 
Primers were designed to amplify both Apol9a and b. ∗p < 0.05 by Student’s t test for each organ. 

(B) Quantification of the average expression ± SEM of Apol9a/b mRNA in MCMV-infected salivary gland, liver, 
and kidney relative to mock-infected tissue as measured by qRT-PCR. Mock-infected n = 3 mice; MCMV-
infected n = 5 mice. ∗∗∗p < 0.001 by Student’s t test for each organ. 

(C and D) Representative in situ hybridization images for Apol9a in WT and Irgm1−/− (C) salivary gland and (D) 
small intestine. Apol9a expression is indicated by dark purple staining. Lower images are insets of upper 
images showing foci of Apol9a expression. The black arrowhead indicates an Apol9a-positive stromal cell, 
and dashed black lines outline an Apol9a-positive epithelial gland. Blue bar, 200 μm; red bar, 100 μm. See 
also Figure S6. 

Apolipoprotein L9 Promoted Epithelial Proliferation through ERK Activation 
Notably, the focal pattern of Apol9a gene expression within the salivary gland was associated with areas of high 
epithelial proliferation (Figure S7A). To determine whether Apol9a could promote proliferation, we used a 
bioluminescence-based assay to quantify proliferation of Apol9a-expressing epithelial cells. This method utilized 
knock-in mice expressing a fusion protein between Cdc25A and click beetle red luciferase (CBRLuc) in the 
endogenous Cdc25a locus (Figures 7A–7C). Cdc25A is a cell cycle phosphatase with peak protein levels during 
mitosis (Boutros et al., 2006). Luminescence from Cdc25A-CBRLuc-expressing cells upon addition of D-luciferin 
substrate thus provided a direct readout of mitotic activity. Imaging of Cdc25A-CBRLuc colonic 



epithelial spheroid cultures revealed an increase in luminescence over a 48 hr culture period (Figures 7C 
and S7B), which correlated with the number of viable cells (Figure S7C). 

 
Figure 7. Apol9a Augmented Epithelial Proliferation through ERK1/2 Activation 

(A) Schematic representation of Cdc25A-CBRLuc fusion protein expressed in the endogenous Cdc25A locus. 
(B) Gray scale photograph and bioluminescence image of gastrointestinal tract of WT mice (A/A) and knock-in 

mice heterozygous (A/Luc) for the Cdc25A-CBRLuc fusion protein. Mice were injected i.p. with D-luciferin, 
sacrificed, and the labeled organs were subjected to bioluminescence imaging ex vivo. Photon flux is 
indicated by the pseudocolored heatmap. 

(C) Bioluminescence image of Cdc25A-CBRLuc-expressing colonic epithelial cell growth over time. Colonic 
epithelial spheroid cultures were established from homozygous (ALuc/ALuc) knock-in mice. D-luciferin was 
added (t = 0 hr), and bioluminescence was measured, and fresh media with D-luciferin replaced at 24 hr. 

(D and E) Graph of the fold change in luminescence during a 24 hr period after addition of D-luciferin in Cdc25A-
CBRLuc intestinal spheroid cultures cultured with (D) media containing Rspo3 and Wnt3a or (E) Wnt3a only. 
Cells express Rspo3, Apol9a, or a negative control. The average fold change in luminescence relative to 
luminescence measured at 4 hr, ± SEM, after background subtraction, of three ind. expts. are shown, with 
12–18 replicates per cell line per experiment. (D) p = 0.0389 and (E) p = 0.0574 by repeated-measures two-
way ANOVA. Asterisks indicate ∗∗p < 0.01 and ∗∗∗∗p < 0.0001 at 24 hr only by Dunnett’s multiple comparisons 
test with comparison to control cells. 

(F) Western blot of phosphorylated and total ERK1/2 (p42 and p44) of cells expressing a negative control, Rspo3, 
or Apol9a. Background-subtracted representative image from three ind. expts. is shown. 

(G) Graph of the fold change in luminescence measured during a 24 hr period after addition of D-luciferin and 
differing concentrations of MEK inhibitor U0126 in Apol9a-expressing Cdc25A-CBRLuc intestinal spheroid 



cultures. The average fold change in luminescence relative to luminescence measured at 4 hr, ± SEM, of two 
ind. expts. is shown, with three replicates per dose per experiment. p = 0.0066 by repeated-measures two-
way ANOVA for 10 μm U0126. 

(H) Graph of the fold change in luminescence measured during a 28 hr period after addition of D-luciferin of 
Cdc25A-CBRLuc intestinal spheroid cultures cultured with WT macrophages expressing Apol9a or a control 
construct, or without macrophages. The average fold change in luminescence relative to luminescence 
measured at 4 hr, ± SEM, of three ind. expts. is shown, with 4–5 technical replicates per experiment. p = 
0.0297 by repeated-measures two-way ANOVA. ∗p < 0.05, ∗∗∗p < 0.001 at 24 hr only by Sidak’s multiple 
comparisons test. See also Figure S7. 

 

We assessed luminescence levels of Cdc25A-CBRLuc intestinal epithelial cells expressing either Apol9a, a positive 
control R-spondin3 (Rspo3), or a negative control construct for 24 hr (Figures 7D and S7B). R-spondins 
enhance Wnt signaling to promote proliferation and survival of tissue stem cells (Haegebarth and Clevers, 2009). 
Both Rspo3 and Wnt3a are required in the normal growth media for primary intestinal epithelial spheroids 
(Miyoshi et al., 2012, Miyoshi and Stappenbeck, 2013). Under these conditions, small intestinal epithelial cells 
expressing Apol9a and the positive control Rspo3 had greater proliferation compared to control cells 
(Figure 7D). However, in media with Wnt3a alone, only epithelial cells expressing Rspo3 were able to proliferate, 
suggesting that Apol9a cannot substitute for Rspo3 to augment Wnt signaling (Figure 7E). Indeed, no significant 
enhancement of Wnt signaling was observed in vivo in Irgm1−/− mice (Figures S7D and S7E). Similar results were 
obtained in WT cells expressing Apol9a and Rspo3 using an EdU incorporation assay (Figure S7F). These results 
suggested that Apol9a expression within epithelial cells was able to stimulate epithelial proliferation. 

Next, to discover potential pathways downstream of Apol9a expression, we analyzed cell lysates of control, 
Rspo3-, and Apol9a-expressing intestinal epithelial cells using a phosphokinase dot blot array. Apol9a-expressing 
epithelial cells showed elevations in phospho-ERK1/2 compared to control cells (Figure S7G), which we verified 
by immunoblotting (Figure 7F). ERK kinases are the downstream signaling component of the MAPK pathway, 
and have been implicated in promoting cell cycle progression and proliferation (Rubinfeld and Seger, 2005). 
Addition of the MEK inhibitor U0126 inhibited ERK1/2 phosphorylation and reduced proliferation of Apol9a-
expressing intestinal epithelial cells, as well as control cells, in a dose-dependent manner (Figures 7G, S7H, 
and S7I). These findings implicated activation of the ERK pathway, which was important for epithelial cell 
proliferation, downstream of Apol9a expression. 

Macrophages Expressing Apol9a Were Able to Promote Epithelial Proliferation in trans 
Finally, we investigated the role of type I IFN signaling in macrophages on Apol9a-mediated epithelial 
proliferation. Based on the localization of Apol9a on macrophages by in situ hybridization (Figure S6D), we 
determined whether type I IFN signaling could induce Apol9a/b in macrophages and stimulate proliferation 
in trans. First, we found that Apol9a/b expression was induced by IFNα in WT, but not Ifnar−/−, macrophages 
(Figure S7J). We then transfected 293FT cells with FLAG-tagged Apol9a and detected FLAG-tagged Apol9a 
protein within the supernatant, suggesting that Apol9a can be secreted (Figure S7K). Next, we expressed Apol9a 
or a control construct in WT bone marrow-derived macrophages and cocultured these cells with Cdc25A-CBRLuc 
intestinal epithelial cells. Macrophages expressing Apol9a enhanced proliferation of epithelial cells greater than 
control macrophages or epithelial cultures alone (Figure 7H). These results suggested that macrophages 
promoted epithelial proliferation in trans via Apol9a expression. 

Discussion 
Taken together, these findings uncover a pathway linking viral infection with enhanced epithelial turnover via 
type I IFNs. Specifically, we showed that elevated type I IFNs can signal through macrophages to enhance 



epithelial proliferation and injury repair. We demonstrated that the highly related ISGs Apol9a/b promoted 
epithelial proliferation. These results redefine the current view of type I IFN effects on proliferation in vivo and 
enhance our understanding of conditions with elevations in these cytokines, such as viral infection and 
autoimmunity. 

The indirect effect on epithelial proliferation driven by viral infection has not been previously described. The 
viruses that stimulated epithelial proliferation are murine homologs of highly prevalent human chronic viruses, 
CMV and herpesvirus, both systemic DNA viruses (Virgin et al., 2009). In contrast, murine norovirus, an RNA 
virus, did not stimulate proliferation in the intestine, where it is tropic (Nice et al., 2013). These results suggest 
that not all viruses can stimulate enhanced epithelial proliferation, perhaps due to differences in tissue 
tropism, viral pathogenesis, and/or virus-encoded proteins. In humans, host factors may also play a role in the 
extent of induced proliferation, as genetic differences can affect immune responses to pathogens, including the 
type I IFN response (Lee et al., 2014). Since chronic viral infection clearly has a systemic effect on host 
physiology, and all individuals possess a collection of persistent viruses as their virome, the use of mouse models 
with chronic viral infections may uncover new biology. 

We found that the effects of type I IFNs on epithelial proliferation are indirect through an additional cell type 
that includes macrophages. We propose that macrophages can act as a relay. Because of their widespread 
distribution, these cells are poised to synthesize information from multiple local and remote sources and then in 
turn instruct proximal epithelial cells. The use of an integrative relay enables the separation of signal from noise 
and allows for the amplification of additive weak signals. The pattern of foci of Apol9a expression observed in 
the salivary gland and small intestine supports the concept of a central cell that spreads and amplifies signals to 
neighboring cells. Our data suggest a model in which type I IFNs signal on macrophages to promote expression 
of Apol9a/b, which can stimulate proliferation in nearby epithelial cells. One possibility is that Apol9a/b is 
secreted from macrophages and then stimulates its own expression in epithelial cells, where it activates ERK to 
promote cell cycle progression. It is also possible that other ISGs expressed in macrophages can promote 
Apol9a/b expression in epithelial cells as well. Our work extends a proposed role for macrophages in epithelial 
maintenance and repair by implicating type I IFNs in this pathway (Farache et al., 2013). This myeloid-epithelial 
circuit could be used by other cytokine signaling systems to modulate diverse epithelial functions. 

We propose that Apol9a/b is one of the mediators of the type I IFN response directed toward epithelial 
progenitors. Relatively little is known about the ApoL family. In humans, there are six known ApoLs, five of which 
are thought to be IFN stimulated (Rusinova et al., 2013, Smith and Malik, 2009). In mice, there are as many as 14 
apolipoprotein L members (Vanhollebeke and Pays, 2006). In contrast to other apolipoprotein families, only 
APOL1 has been implicated in lipid transport and metabolism to date (Albert et al., 2005, Duchateau et al., 
2000). Interestingly, increased expression of ApoLs has been observed in cervical and breast cancer (Ahn et al., 
2004, Jung et al., 2005). Apol9b has been implicated in antiviral protection in L929 cells and primary neurons, 
but the extent and mechanism of such protection was unclear (Kreit et al., 2014). In this report, we show that 
Apol9a can be secreted and promotes epithelial proliferation. Since there are hundreds of ISGs that can be 
induced in a given cell type, it is unlikely that Apol9a and b are the sole mediators of type I IFN-dependent 
epithelial proliferation. Other ISGs may have redundant functions. Nonetheless, Apol9a/b and the ApoL family 
are ISGs that warrant further study in the context of homeostasis and during viral infection. 

We show that Apol9a expression can enhance activation of the ERK pathway and in turn proliferation. The 
connection between the ERK pathway and proliferation is well supported by previous studies, which show that 
ERK activation promotes cell cycle progression and cellular differentiation (Rubinfeld and Seger, 2005, Zhang and 
Liu, 2002). Sustained ERK activation activates cyclin D1 expression and decreases CDK inhibitor levels to allow 
cells to pass the G1 restriction point and enter the S phase of the cell cycle (Rubinfeld and Seger, 2005). Thus, an 
increase in ERK activation would be able to increase the rate of cell cycling. 



Modulation of the ERK pathway would allow for an additional level of control of proliferation in epithelial organs 
beyond Wnt signaling, which is required for the maintenance of stem and progenitor cells (Haegebarth and 
Clevers, 2009, Reya and Clevers, 2005). Wnt ligands bind to their receptor complex and trigger the localization of 
β-catenin to the nucleus, where it associates with transcription factors that activate multiple target genes to 
promote a baseline rate of self-renewal and proliferation (Reya and Clevers, 2005). The source of Wnts is 
thought to be local nonepithelial mesenchymal cells and, in the intestine, also Paneth cells (Farin et al., 2012). In 
contrast, type I IFN signaling can generate a signal at the systemic level. Downstream activation of the ERK 
pathway could then increase the normal rate of cell cycling in stem and progenitor cells. We propose that type I 
IFNs provide additional systemic control of epithelial proliferation and healing under nonhomeostatic conditions 
of infection and injury. 

Finally, many human conditions are associated with elevated type I IFN signatures, similar to our observations in 
the Irgm1−/− mouse. For example, upregulation of type I IFNs is associated with the type I interferonopathies, a 
group of Mendelian disorders (Crow, 2011, Rice et al., 2014), as well as systemic lupus erythematosus (SLE) (Di 
Domizio and Cao, 2013). These diseases, which include Aicardi-Goutieres syndrome (AGS) and 
spondyloenchondrodysplasia (SPENCD) are proposed to arise from either (i) inappropriate activation of the type 
I IFN response or (ii) inadequate negative regulation of type I IFN production (Crow, 2011). While the molecular 
bases of some cases of type I interferonopathy are known, many cases remain genetically uncharacterized. It 
would be interesting to determine whether there are gene changes in human IRGM in these cases that are 
linked with elevated type I IFN. In addition, we have only limited understanding of the role of type I IFNs on 
disease pathogenesis and progression. Our findings here suggest that elevated type I IFNs may not be sufficient 
to cause the severe autoimmunity seen in SLE, AGS, and SPENCD. We did not observe the abnormal skin, brain, 
or bone dysplasias typically seen in these conditions in Irgm1-deficient mice (data not shown). Instead, we 
observed increased epithelial turnover, with both augmented cell proliferation and cell death. It is possible that 
this elevated turnover could increase the risk for exposure of cell contents, such as nucleic acids, to the immune 
system. Additional genetic or environmental contributions could then trigger autoimmunity to the cellular 
components. Our findings show that constitutively elevated type I IFNs can promote systemic epithelial 
proliferation and cell death, thus expanding our knowledge of the host response during infection and 
autoimmunity. 

Experimental Procedures 
Mice 
All experimental procedures were performed under approval by Washington University’s Animal Studies 
Committee. For experiments with knockout mouse lines, heterozygote breeding pairs were used to obtain WT 
controls. For experiments using lineage-specific knockouts, heterozygous crosses were used to generate Cre-
negative controls. Cdc25A-CBRLuc reporter mice were generated on a B6(Cg)-Tyrc-2J/J (B6-albino) background. A 
targeting construct containing DNA encoding a fusion protein of Cdc25A and CBRLuc was knocked in to the 
Cdc25A locus by homologous recombination. 

In Vivo Treatment of Mice 
For MCMV infection, 6- to 8-week-old male and female mice were injected i.p. with 5×104 plaque-forming 
units (pfu) MCMV Smith strain (salivary gland derived). Mice were sacrificed 7 days postinfection. For MHV68 
infection, 6- to 8-week-old male and female mice were injected i.p. with 1×106 pfu virus. Mice were sacrificed 
7 days postinfection. Titer determinations for both MCMV and MHV68 were performed on NIH 
3T12 fibroblasts with methylcellulose overlay as previously described (Canny et al., 2014). The limit of detection 
of the MCMV plaque assays was 40 pfu/organ, while the limit of detection of the MHV68 assay was 100 
pfu/organ. For polyI:C experiments, 5 mg/kg polyI:C (GE Healthcare Life Sciences) diluted in sterile saline or 



saline alone was injected i.p. once every 24 hr for 4 days. Mice were sacrificed on day 5. For neutrophil-
depletion experiments, 500 μg/mouse of monoclonal anti-Ly6G antibody (BioXCell) or rat IgG2a isotype control 
(BioXCell) diluted in 250 μl sterile saline was injected i.p. 1 day prior and 2 days following the onset of polyI:C 
injections. 

Type I IFN Bioassay 
Type I IFN bioassay was performed as previously described (Newby et al., 2007), with further details provided in 
the Supplemental Experimental Procedures. 

Tissue Histology and Immunohistochemistry 
Detailed methods are described in Supplemental Experimental Procedures. Epithelial mitotic figures were 
quantified from H&E-stained sections of Bouin’s fixed small intestines. Crypt depth was measured from the 
same sections by ImageJ software. All slides were blinded prior to quantification. 

Primary Intestinal Spheroid Epithelial Culture 
Colonic and small intestinal crypts were isolated from mice and cultured in a 3D Matrigel as previously described 
(Miyoshi et al., 2012, Miyoshi and Stappenbeck, 2013). 

Bioluminescence Imaging of Whole Organs and Intestinal Epithelial Spheroids 
Detailed methods are further described in Supplemental Experimental Procedures. Colonic crypts were isolated 
from knock-in mice that were homozygous (ALuc/ALuc) for the Cdc25A-CBRLuc fusion protein, and 
intestinal spheroids were cultured in conditioned media as described above. For luminescence experiments 
with lentivirus construct-expressing cells, spheroids were trypsinized and seeded onto 96-well plates. Media 
containing 200 μg/ml D-luciferin (Biosynth) was added to each well, and cells were imaged at 37°C in an EnVision 
Multilabel Plate Reader (PerkinElmer) with a 1 s exposure per well. Luminescence was measured every 4 hr for 
24 hr, and the fold change in luminescence relative to luminescence measured at 4 hr was plotted. This time 
point was chosen because the measurements at t0 are close to background, as it takes some time after the 
addition of D-luciferin for this substrate to be metabolized by the luciferase. 

Statistics 
GraphPad Prism software (version 6) was used to perform all statistical analyses unless otherwise specified. 
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