275 research outputs found

    Determining Toxic Potencies of Water-Soluble Contaminants in Wastewater Influents and Effluent Using Gene Expression Profiling in C. elegans as a Bioanalytical Tool

    Get PDF
    With chemical analysis, it is impossible to qualify and quantify the toxic potency of especially hydrophilic bioactive contaminants. In this study, we applied the nematode C. elegans as a model organism for detecting the toxic potency of whole influent wastewater samples. Gene expression in the nematode was used as bioanalytical tool to reveal the presence, type and potency of molecular pathways induced by 24-h exposure to wastewater from a hospital (H), nursing home (N), community (C), and influent (I) and treated effluent (E) from a local wastewater treatment plant. Exposure to influent water significantly altered expression of 464 genes, while only two genes were differentially expressed in nematodes treated with effluent. This indicates a significant decrease in bioactive pollutant-load after wastewater treatment. Surface water receiving the effluent did not induce any genes in exposed nematodes. A subset of 209 genes was differentially expressed in all untreated wastewaters, including cytochromes P450 and C-type lectins related to the nematode's xenobiotic metabolism and immune response, respectively. Different subsets of genes responded to particular waste streams making them candidates to fingerprint-specific wastewater sources. This study shows that gene expression profiling in C. elegans can be used for mechanism-based identification of hydrophilic bioactive compounds and fingerprinting of specific wastewaters. More comprehensive than with chemical analysis, it can demonstrate the effective overall removal of bioactive compounds through wastewater treatment. This bioanalytical tool can also be applied in the process of identification of the bioactive compounds via a process of toxicity identification evaluation. [GRAPHICS]

    Comparison of chemical-activated luciferase gene expression bioassay and gas chromatography for PCB determination in human serum and follicular fluid.

    Get PDF
    We assessed exposure to dioxin-like compounds using chemical and bioassay analysis in different matrices in a female population. A total of 106 serum and 9 follicular fluid samples were collected from infertile women attending Centers for Reproductive Medicine in Belgium from 1996 to 1998. Major polychlorinated biphenyl (PCB) congeners were quantified by chemical analysis using gas chromatography with electron-capture detection, and the chemical-activated luciferase gene expression (CALUX) bioassay was used to determine the total dioxin-like toxic equivalence (TEQ) of mixtures of polyhalogenated aromatic hydrocarbons present in body fluids, such as serum and follicular fluid. To the best of our knowledge, this is the first investigation to determine TEQ values by the CALUX bioassay in follicular fluid. The TEQ levels in both matrices are well correlated (r = 0.83, p = 0.02). As the chemical and bioassay analysis executed in this study do not cover the same span of polyhalogenated aromatic hydrocarbons, we did not expect totally correlated results. Moreover, the sample workup and quantification of the analytes differed completely. Nonetheless, the TEQ values in human extracts correlated well with the sum of four major PCB congeners chemically determined in both serum and follicular fluid. These results indicate that the CALUX bioassay may serve as a simple, relatively inexpensive prescreening tool for exposure assessment in epidemiologic surveys

    WIRA-C: a compact 142-GHz-radiometer for continuous middle-atmospheric wind measurements

    Get PDF
    Ground-based microwave wind radiometry provides a method to measure horizontal wind speeds at altitudes between 35 and 75&thinsp;km as has been shown by various previous studies. No other method is capable of continuously delivering wind measurements in this altitude region. As opposed to lidar systems, microwave radiometers operate autonomously and independent of daylight and clouds.In this paper, we present the WIRA-C (Wind Radiometer for Campaigns) instrument that observes the 142.17504&thinsp;GHz rotational transition line of ozone with a high spectral resolution using a low noise single side band heterodyne receiver. Because the emitting molecules are drifting with the wind, the line is Doppler shifted. Together with the pressure broadening effect, this allows the retrieval of altitude resolved wind profiles.The novel WIRA-C instrument represents the newest development in microwave wind radiometry and implements many improvements over its predecessor, the WIRA instrument. The main improvements include the compact structure, lower noise and an advanced retrieval setup. This paper describes the instrument and the data processing with a focus on the retrieval that takes into account a three-dimensional atmosphere and has never been used in ground-based radiometry before. The retrieval yields profiles of horizontal wind speeds with a 12&thinsp;h time resolution and a vertical resolution of 10&thinsp;km for zonal and 10 to 15&thinsp;km for meridional wind speeds. We give an error estimate that accounts for the thermal noise on the measured spectra and additionally estimate systematic errors using Monte Carlo methods.WIRA-C has been continuously measuring horizontal wind speeds for 1 year at the Maïdo observatory on Réunion (21.4°&thinsp;S, 55.9°&thinsp;E). We present the time series of this campaign and compare our measurements to model data from the European Centre for Medium-range Weather Forecasts (ECMWF) and coincident measurements of the co-located Rayleigh–Mie Doppler wind lidar. We find a good agreement between our measurements and the ECMWF operational analysis for the time series, where many features are present in both datasets. The wind profiles of the coincident WIRA-C and lidar observations are consistent and agree within their respective uncertainties for the lidar measurements with long integration times.</p

    In vitro profiling of the endocrine-disrupting potency of brominated flame retardants

    Get PDF
    Over the last years, increasing evidence has become available that some brominated flame retardants (BFRs) may have endocrine disrupting (ED) potencies. The goal of the current study was to perform a systematic in vitro screening of the ED potencies of BFRs (1) to elucidate possible modes of action of BFRs in man and wildlife, and (2) to classify BFRs with similar profiles of ED potencies. A test set of twenty-seven individual BFRs was selected, consisting of nineteen polybrominated diphenylethers (PBDE) congeners, tetrabromobisphenol-A (TBBPA), hexabromocyclododecane (HBCD), 2,4,6-tribromophenol (246-TBP), ortho-hydroxylated BDE-47 (6OH-BDE-47), and TBBPA-bis(2,3)dibromopropylether (TBBPA-DBPE). All BFRs were tested for their potency to interact with the arylhydrocarbon receptor (AhR), androgen receptor (AR), progesterone receptor (PR), and estrogen receptor (ER). In addition, all BFRs were tested for their potency to inhibit estradiol (E2) sulfation by E2-sulfotransferase (E2SULT), to interfere with thyroid hormone 3,3`,5-triiodothyronine (T3) mediated cell proliferation, and to compete with T3-precursor thyroxine (T4) for binding to the plasma transport protein transthyretin (TTR). The results of the in vitro screening indicated that BFRs have ED potencies, some of which had not or only marginally been described before (AR-antagonism, PR-antagonism, E2SULT inhibition, and potentiation of T3-mediated effects). For some BFRs, the potency to induce AR-antagonism, E2SULT inhibition and TTR competition was higher than for natural ligands or clinical drugs used as positive controls. Based on their similarity in ED profiles, BFRs were classified into five different clusters. These findings support further investigation of the potential endocrine disrupting effects of these environmentally relevant BFRs in man and wildlife

    Поличний сушильний апарат для термолабільних зернових матеріалів

    Get PDF
    A study was performed to optimize sample preparation and application of three in vitro assays for measuring estrogenic potency in environmental extracts. The three assays applied were an estrogen receptor (ER)-binding assay and two reporter gene effect assays: a yeast estrogen screen (YES) and the ER-mediated chemically activated luciferase gene expression (ER-CALUX) assay. All assays were able to detect estrogenicity, but the amounts of material needed for the assays differed greatly between the three assays (ER-binding assay ≫ YES > ER-CALUX). In addition, in the ER-binding assay, both agonists and antagonists give an estrogenic response, resulting in higher estradiol equivalency (EEQ) levels than both the ER-CALUX and the YES assay for the same samples. The EEQs found in wastewater treatment plants (WTPs) with the ER-CALUX assay were in the range of 4 to 440 and 0.11 to 59 pmol/L for influent and effluent, respectively. Water extracts from four large rivers had levels ranging from 0.25 to 1.72 pmol/L. Extracts from suspended matter and sludge contained estrogenic potency of 0.26 to 2.49 and 1.6 to 41 pmol EEQ/g dry weight, respectively. In WTPs, the average reduction of estrogenic potency in effluent compared to influent was 90 to 95% in municipal WTPs and about 50% in industrial WTPs. In influent, 30% of the ER-CALUX activity could not be explained by the calculated potencies based on chemical analysis of a number of known (xeno)estrogens; in effluent the unexplained fraction was 80%. These first results of analyzing estrogenic potency in WTP water and surface water in The Netherlands indicate that further studies are warranted to investigate the actual risks for aquatic systems

    Test, trace, isolate:Evidence for declining SARS-CoV-2 PCR sensitivity in a clinical cohort

    Get PDF
    Real-time reverse transcription-polymerase chain reaction (RT-PCR) on upper respiratory tract (URT) samples is the primary method to diagnose SARS-CoV-2 infections and guide public health measures, with a supportive role for serology. We reinforce previous findings on limited sensitivity of PCR testing, and solidify this fact by statistically utilizing a firm basis of multiple tests per individual. We integrate stratifications with respect to several patient characteristics such as severity of disease and time since onset of symptoms. Bayesian statistical modelling was used to retrospectively determine the sensitivity of RT-PCR using SARS-CoV-2 serology in 644 COVID-19-suspected patients with varying degrees of disease severity and duration. The sensitivity of RT-PCR ranged between 80% − 95%; increasing with disease severity, it decreased rapidly over time in mild COVID-19 cases. Negative URT RT-PCR results should be interpreted in the context of clinical characteristics, especially with regard to containment of viral transmission based on ‘test, trace and isolate’

    Wideband 67-116 GHz cryogenic receiver development for ALMA Band 2

    Get PDF
    The Atacama Large Millimeter/sub-millimeter Array (ALMA) is already revolutionising our understanding of the Universe. However, ALMA is not yet equipped with all of its originally planned receiver bands, which will allow it to observe over the full range of frequencies from 35-950 GHz accessible through the Earth's atmosphere. In particular Band 2 (67-90 GHz) has not yet been approved for construction. Recent technological developments in cryogenic monolithic microwave integrated circuit (MMIC) high electron mobility transistor (HEMT) amplifier and orthomode transducer (OMT) design provide an opportunity to extend the originally planned on-sky bandwidth, combining ALMA Bands 2 and 3 into one receiver cartridge covering 67-116 GHz. The IF band definition for the ALMA project took place two decades ago, when 8 GHz of on-sky bandwidth per polarisation channel was an ambitious goal. The new receiver design we present here allows the opportunity to expand ALMA's wideband capabilities, anticipating future upgrades across the entire observatory. Expanding ALMA's instantaneous bandwidth is a high priority, and provides a number of observational advantages, including lower noise in continuum observations, the ability to probe larger portions of an astronomical spectrum for, e.g., widely spaced molecular transitions, and the ability to scan efficiently in frequency space to perform surveys where the redshift or chemical complexity of the object is not known a priori. Wider IF bandwidth also reduces uncertainties in calibration and continuum subtraction that might otherwise compromise science objectives. Here we provide an overview of the component development and overall design for this wideband 67-116 GHz cryogenic receiver cartridge, designed to operate from the Band 2 receiver cartridge slot in the current ALMA front end receiver cryostat.Comment: 8 pages, proceedings from the 8th ESA Workshop on Millimetre-Wave Technology and Applications (https://atpi.eventsair.com/QuickEventWebsitePortal/millimetre-wave/mm-wave

    Neuronal Profilin Isoforms Are Addressed by Different Signalling Pathways

    Get PDF
    Profilins are prominent regulators of actin dynamics. While most mammalian cells express only one profilin, two isoforms, PFN1 and PFN2a are present in the CNS. To challenge the hypothesis that the expression of two profilin isoforms is linked to the complex shape of neurons and to the activity-dependent structural plasticity, we analysed how PFN1 and PFN2a respond to changes of neuronal activity. Simultaneous labelling of rodent embryonic neurons with isoform-specific monoclonal antibodies revealed both isoforms in the same synapse. Immunoelectron microscopy on brain sections demonstrated both profilins in synapses of the mature rodent cortex, hippocampus and cerebellum. Both isoforms were significantly more abundant in postsynaptic than in presynaptic structures. Immunofluorescence showed PFN2a associated with gephyrin clusters of the postsynaptic active zone in inhibitory synapses of embryonic neurons. When cultures were stimulated in order to change their activity level, active synapses that were identified by the uptake of synaptotagmin antibodies, displayed significantly higher amounts of both isoforms than non-stimulated controls. Specific inhibition of NMDA receptors by the antagonist APV in cultured rat hippocampal neurons resulted in a decrease of PFN2a but left PFN1 unaffected. Stimulation by the brain derived neurotrophic factor (BDNF), on the other hand, led to a significant increase in both synaptic PFN1 and PFN2a. Analogous results were obtained for neuronal nuclei: both isoforms were localized in the same nucleus, and their levels rose significantly in response to KCl stimulation, whereas BDNF caused here a higher increase in PFN1 than in PFN2a. Our results strongly support the notion of an isoform specific role for profilins as regulators of actin dynamics in different signalling pathways, in excitatory as well as in inhibitory synapses. Furthermore, they suggest a functional role for both profilins in neuronal nuclei
    corecore