1,930 research outputs found

    Antecedents, Psychological Bonds to Multiple Targets and Outcomes: A qualitative Approach of their Links

    Get PDF
    Based on the re-conceptualization of the work commitment construct and on the notion of quondam commitment (Klein and al., 2012, 2014, 2017), this paper examines all the psychological bond types to multiple workplace targets, using a qualitative methodology approach. After providing a reminder of the theoretical background, the results of a case study, conducted in a major company, are presented. For that purpose, semi-structured interviews with 26 employees and the HR Manager were carried out and completed with a documentary analysis of the company’s website and corporate documents. A manual content analysis has been processed, using the NVivo software. The results show how complex and multifaceted the links between antecedents, psychological bonds towards different targets and their attitudinal/behavioural consequences are and provide a better understanding of the process model of commitment development or loss. Finally, we discuss key theoretical and managerial implications of our study

    Studying the evolution of galaxies in compact groups over the past 3 Gyr - II. The importance of environment in the suppression of star formation

    Get PDF
    We present an in depth study on the evolution of galaxy properties in compact groups over the past 3 Gyr. We are using the largest multi-wavelength sample to-date, comprised 1770 groups (containing 7417 galaxies), in the redshift range of 0.01<z<0.23. To derive the physical properties of the galaxies we rely on ultraviolet (UV)-to-infrared spectral energy distribution modeling, using CIGALE. Our results suggest that during the 3 Gyr period covered by our sample, the star formation activity of galaxies in our groups has been substantially reduced (3-10 times). Moreover, their star formation histories as well as their UV-optical and mid-infrared colors are significantly different from those of field and cluster galaxies, indicating that compact group galaxies spend more time transitioning through the green valley. The morphological transformation from late-type spirals into early-type galaxies occurs in the mid-infrared transition zone rather than in the UV-optical green valley. We find evidence of shocks in the emission line ratios and gas velocity dispersions of the late-type galaxies located below the star forming main sequence. Our results suggest that in addition to gas stripping, turbulence and shocks might play an important role in suppressing the star formation in compact group galaxies.Comment: (Accepted for publication in MNRAS, date of submission November 18, 2015

    Integration of landslide susceptibility maps for land use planning and civil protection emergency management

    Get PDF
    Landslides are one of the most relevant geomorphological hazards in Portugal, by the high levels of people affected, destruction of assets and disruption of economic and social activities. Regarding the Portuguese territorial land use planning and emergency management, regulation, practice, prevention and risk management have been promoted in different ways. In Portugal, the areas susceptible to landslides are included in the 'National Ecological Reserve', which is a public utility restriction legal figure that rules the land use planning at the municipal level. In addition, the Municipal Emergency Plans include landslide susceptibility maps that are combined with the map of the exposed elements, allowing the assessment of exposure to landslides. This study is applied to the Loures municipality located to the north of Lisbon. In this municipality 621 landslides registered in a landslide inventory (rotational slides, deep-seated translational slides and shallow translational slides) that affected 1,469,577 m2 (0.87 %) of the Loures territory. The final landslide susceptibility map shows that in Loures municipality 1,347 ha are associated to a Very high landslide susceptibility and 2,372 ha to High landslide susceptibility, which corresponds both to 22.1 % of the entire municipality, and constitutes the larger fraction of the National Ecological Reserve, related to landslides. These areas do not present geomorphological and geotechnical suitability for building structures or infrastructures. From the civil protection and emergency management point of views 34 classes of exposed elements were identified in the municipality, with point, linear and polygonal representations. The elements at risk located in the Very High or High landslide susceptibility classes were summarized and correspond to: high voltage poles; wind turbines; transmission/reception antennas; industrial areas; water tanks; silo; gas station/tank; service area; buildings of educational institutions; worship buildings; buildings of electricity facilities; regular buildings; gas pipeline; motorways; national roads; and municipal roads.info:eu-repo/semantics/publishedVersio

    Herschel Extreme Lensing Line Observations: Dynamics of two strongly lensed star forming galaxies near redshift z = 2

    Get PDF
    We report on two regularly rotating galaxies at redshift z=2, using high resolution spectra of the bright [CII] 158 micron emission line from the HIFI instrument on the Herschel Space Observatory. Both SDSS090122.37+181432.3 ("S0901") and SDSS J120602.09+514229.5 ("the Clone") are strongly lensed and show the double-horned line profile that is typical of rotating gas disks. Using a parametric disk model to fit the emission line profiles, we find that S0901 has a rotation speed v sin(i) = 120 +/- 7 km/s and gas velocity dispersion sigma < 23 km/s. The best fitting model for the Clone is a rotationally supported disk having v sin(i) = 79 +/- 11 km/s and sigma < 4km/s. However the Clone is also consistent with a family of dispersion-dominated models having sigma = 92 +/- 20 km/s. Our results showcase the potential of the [CII] line as a kinematic probe of high redshift galaxy dynamics: [CII] is bright; accessible to heterodyne receivers with exquisite velocity resolution; and traces dense star-forming interstellar gas. Future [CII] line observations with ALMA would offer the further advantage of spatial resolution, allowing a clearer separation between rotation and velocity dispersion.Comment: 20 pages, 4 figures; in press at The Astrophysical Journa

    Optical performance of the JWST MIRI flight model: characterization of the point spread function at high-resolution

    Get PDF
    The Mid Infra Red Instrument (MIRI) is one of the four instruments onboard the James Webb Space Telescope (JWST), providing imaging, coronagraphy and spectroscopy over the 5-28 microns band. To verify the optical performance of the instrument, extensive tests were performed at CEA on the flight model (FM) of the Mid-InfraRed IMager (MIRIM) at cryogenic temperatures and in the infrared. This paper reports on the point spread function (PSF) measurements at 5.6 microns, the shortest operating wavelength for imaging. At 5.6 microns the PSF is not Nyquist-sampled, so we use am original technique that combines a microscanning measurement strategy with a deconvolution algorithm to obtain an over-resolved MIRIM PSF. The microscanning consists in a sub-pixel scan of a point source on the focal plane. A data inversion method is used to reconstruct PSF images that are over-resolved by a factor of 7 compared to the native resolution of MIRI. We show that the FWHM of the high-resolution PSFs were 5-10% wider than that obtained with Zemax simulations. The main cause was identified as an out-of-specification tilt of the M4 mirror. After correction, two additional test campaigns were carried out, and we show that the shape of the PSF is conform to expectations. The FWHM of the PSFs are 0.18-0.20 arcsec, in agreement with simulations. 56.1-59.2% of the total encircled energy (normalized to a 5 arcsec radius) is contained within the first dark Airy ring, over the whole field of view. At longer wavelengths (7.7-25.5 microns), this percentage is 57-68%. MIRIM is thus compliant with the optical quality requirements. This characterization of the MIRIM PSF, as well as the deconvolution method presented here, are of particular importance, not only for the verification of the optical quality and the MIRI calibration, but also for scientific applications.Comment: 13 pages, submitted to SPIE Proceedings vol. 7731, Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wav

    The Antares Neutrino Telescope and Multi-Messenger Astronomy

    Full text link
    Antares is currently the largest neutrino telescope operating in the Northern Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources. Such observations would provide important clues about the processes at work in those sources, and possibly help solve the puzzle of ultra-high energy cosmic rays. In this context, Antares is developing several programs to improve its capabilities of revealing possible spatial and/or temporal correlations of neutrinos with other cosmic messengers: photons, cosmic rays and gravitational waves. The neutrino telescope and its most recent results are presented, together with these multi-messenger programs.Comment: 10 pages, 7 figures. Proceedings of the 14th Gravitational Wave Data Analysis Workshop (GWDAW-14) in Roma - January 26th-29th, 201

    Assessment of physical vulnerability of buildings and analysis of landslide risk at the municipal scale: application to the Loures municipality, Portugal

    Get PDF
    This study offers a semi-quantitative assessment of the physical vulnerability of buildings to landslides in a Portuguese municipality (Loures), as well as the quantitative landslide risk analysis computed as the product of the landslide hazard by the vulnerability and the economic value of the buildings. The hazard was assessed by combining the spatiotemporal probability and the frequency–magnitude relationship of the landslides. The physical vulnerability assessment was based on an inquiry of a pool of European landslide experts and a sub-pool of landslide experts who know the study area, and the answers’ variability was assessed with standard deviation. The average vulnerability of the basic geographic entities was compared by changing the map unit and applying the vulnerability to all the buildings of a test site, the inventory of which was listed on the field. The economic value was calculated using an adaptation of the Portuguese Tax Services approach, and the risk was computed for different landslide magnitudes and different spatiotemporal probabilities. As a rule, the vulnerability values given by the sub-pool of experts who know the study area are higher than those given by the European experts, namely for the high-magnitude landslides. The obtained vulnerabilities vary from 0.2 to 1 as a function of the structural building types and the landslide magnitude, and are maximal for 10 and 20m landslide depths. However, the highest risk was found for the landslides that are 3m deep, because these landslides combine a relatively high frequency in the Loures municipality with a substantial potential damage.info:eu-repo/semantics/publishedVersio

    Shock excitation of H2_2 in the James Webb Space Telescope era

    Full text link
    (Abridged) H2 is the most abundant molecule in the Universe. Thanks to its widely spaced energy levels, it predominantly lights up in warm gas, T > 100 K, such as shocked regions, and it is one of the key targets of JWST observations. These include shocks from protostellar outflows, all the way up to starburst galaxies and AGN. Shock models are able to simulate H2 emission. We aim to explore H2 excitation using such models, and to test over which parameter space distinct signatures are produced in H2 emission. We present simulated H2 emission using the Paris-Durham shock code over an extensive grid of 14,000 plane-parallel stationary shock models, a large subset of which are exposed to an external UV radiation field. The grid samples 6 input parameters: preshock density, shock velocity, transverse magnetic field strength, UV radiation field strength, cosmic-ray-ionization rate, and PAH abundance. Physical quantities, such as temperature, density, and width, have been extracted along with H2 integrated line intensities. The strength of the transverse magnetic field, set by the scaling factor, b, plays a key role in the excitation of H2. At low values of b (<~ 0.3, J-type shocks), H2 excitation is dominated by vibrationally excited lines; at higher values (b >~ 1, C-type shocks), rotational lines dominate the spectrum for shocks with an external radiation field comparable to (or lower than) the solar neighborhood. Shocks with b >= 1 can be spatially resolved with JWST for nearby objects. When the input kinetic energy flux increases, the excitation and integrated intensity of H2 increases similarly. An external UV field mainly serves to increase the excitation, particularly for shocks where the input radiation energy is comparable to the input kinetic energy flux. These results provide an overview of the energetic reprocessing of input kinetic energy flux and the resulting H2 line emission.Comment: Published in A&

    Turbulent molecular gas and star formation in the shocked intergalactic medium of Stephan's Quintet

    Get PDF
    We report on single-dish radio CO observations towards the inter-galactic medium (IGM) of the Stephan's Quintet (SQ) group of galaxies. Extremely bright mid-IR H2 rotational line emission from warm molecular gas has been detected by Spitzer in the kpc-scale shock created by a galaxy collision. We detect in the IGM CO(1-0), (2-1) and (3-2) line emission with complex profiles, spanning a velocity range of 1000 km/s. The spectra exhibit the pre-shock recession velocities of the two colliding gas systems (5700 and 6700 km/s), but also intermediate velocities. This shows that much of the molecular gas has formed out of diffuse gas accelerated by the galaxy-tidal arm collision. A total H2 mass of 5x10^9 Msun is detected in the shock. The molecular gas carries a large fraction of the gas kinetic energy involved in the collision, meaning that this energy has not been thermalized yet. The turbulent kinetic energy of the H2 gas is at least a factor of 5 greater than the thermal energy of the hot plasma heated by the collision. The ratio between the warm H2 mass derived from Spitzer IRS spectroscopy and the H2 mass derived from CO fluxes is ~0.3 in the IGM of SQ, which is 10-100 times higher than in star-forming galaxies. In the shocked region, the ratio of the PAH-to-CO surface luminosities, commonly used to measure the star formation efficiency of the H2 gas, is lower (up to a factor 75) than the observed values in star-forming galaxies. We suggest that turbulence fed by the galaxy-tidal arm collision maintains a high heating rate within the H2 gas. This interpretation implies that the velocity dispersion on the scale of giant molecular clouds in SQ is one order of magnitude larger than the Galactic value. The high amplitude of turbulence may explain why this gas is not forming stars efficiently. [abridged version]Comment: Revised abstract and small editing to match published version. 15 pages, 5 figures. Accepted for publication in Ap
    corecore