30 research outputs found

    Can neuroforecasting predict market behaviour?

    Get PDF
    For generations, marketers have tried to get into the mind of the consumer. Now, using new brain imaging techniques, we’re tantalizingly close. The emerging science of neuroforecasting is still very young, but bit by bit, researchers are learning more about the connection between thinking – or more specifically, reacting – and doing

    Can neuroforecasting predict market behaviour?

    Get PDF
    For generations, marketers have tried to get into the mind of the consumer. Now, using new brain imaging techniques, we’re tantalizingly close. The emerging science of neuroforecasting is still very young, but bit by bit, researchers are learning more about the connection between thinking – or more specifically, reacting – and doing

    Neural affective mechanisms predict market-level microlending

    Get PDF
    Humans sometimes share with others whom they may never meet or know, in violation of the dictates of pure self-interest. Research has not established which neuropsychological mechanisms support lending decisions, nor whether their influence extends to markets involving significant financial incentives. In two studies, we found that neural affective mechanisms influence the success of requests for microloans. In a large Internet database of microloan requests (N = 13,500), we found that positive affective features of photographs promoted the success of those requests. We then established that neural activity (i.e., in the nucleus accumbens) and self-reported positive arousal in a neuroimaging sample (N = 28) predicted the success of loan requests on the Internet, above and beyond the effects of the neuroimaging sample’s own choices (i.e., to lend or not). These findings suggest that elicitation of positive arousal can promote the success of loan requests, both in the laboratory and on the Internet. They also highlight affective neuroscience’s potential to probe neuropsychological mechanisms that drive microlending, enhance the effectiveness of loan requests, and forecast market-level behavior

    Neuroforecasting Aggregate Choice

    Get PDF
    Advances in brain-imaging design and analysis have allowed investigators to use neural activity to predict individual choice, while emerging Internet markets have opened up new opportunities for forecasting aggregate choice. Here, we review emerging research that bridges these levels of analysis by attempting to use group neural activity to forecast aggregate choice. A survey of initial findings suggests that components of group neural activity might forecast aggregate choice, in some cases even beyond traditional behavioral measures. In addition to demonstrating the plausibility of neuroforecasting, these findings raise the possibility that not all neural processes that predict individual choice forecast aggregate choice to the same degree. We propose that although integrative choice components may confer more consistency within individuals, affective choice components may generalize more broadly across individuals to forecast aggregate choice

    Brain activity forecasts video engagement in an internet attention market

    Get PDF
    The growth of the internet has spawned new “attention markets,” in which people devote increasing amounts of time to consuming online content, but the neurobehavioral mechanisms that drive engagement in these markets have yet to be elucidated. We used functional MRI (FMRI) to examine whether individuals’ neural responses to videos could predict their choices to start and stop watching videos as well as whether group brain activity could forecast aggregate video view frequency and duration out of sample on the internet (i.e., on youtube.com). Brain activity during video onset predicted individual choice in several regions (i.e., increased activity in the nucleus accumbens [NAcc] and medial prefrontal cortex [MPFC] as well as decreased activity in the anterior insula [AIns]). Group activity during video onset in only a subset of these regions, however, forecasted both aggregate view frequency and duration (i.e., increased NAcc and decreased AIns)—and did so above and beyond conventional measures. These findings extend neuroforecasting theory and tools by revealing that activity in brain regions implicated in anticipatory affect at the onset of video

    Data Mining the Brain to Decode the Mind

    Get PDF
    In recent years, neuroscience has begun to transform itself into a “big data” enterprise with the importation of computational and statistical techniques from machine learning and informatics. In addition to their translational applications such as brain-computer interfaces and early diagnosis of neuropathology, these tools promise to advance new solutions to longstanding theoretical quandaries. Here I critically assess whether these promises will pay off, focusing on the application of multivariate pattern analysis (MVPA) to the problem of reverse inference. I argue that MVPA does not inherently provide a new answer to classical worries about reverse inference, and that the method faces pervasive interpretive problems of its own. Further, the epistemic setting of MVPA and other decoding methods contributes to a potentially worrisome shift towards prediction and away from explanation in fundamental neuroscience

    Verbal working memory and functional large-scale networks in schizophrenia

    Get PDF
    The aim of this study was to test whether bilinear and nonlinear effective connectivity (EC) measures of working memory fMRI data can differentiate between patients with schizophrenia (SZ) and healthy controls (HC). We applied bilinear and nonlinear Dynamic Causal Modeling (DCM) for the analysis of verbal working memory in 16 SZ and 21 HC. The connection strengths with nonlinear modulation between the dorsolateral prefrontal cortex (DLPFC) and the ventral tegmental area/substantia nigra (VTA/SN) were evaluated. We used Bayesian Model Selection at the group and family levels to compare the optimal bilinear and nonlinear models. Bayesian Model Averaging was used to assess the connection strengths with nonlinear modulation. The DCM analyses revealed that SZ and HC used different bilinear networks despite comparable behavioral performance. In addition, the connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area showed differences between SZ and HC. The adoption of different functional networks in SZ and HC indicated neurobiological alterations underlying working memory performance, including different connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area. These novel findings may increase our understanding of connectivity in working memory in schizophrenia

    When brain beats behavior: Neuroforecasting crowdfunding outcomes

    Get PDF
    textabstractAlthough traditional economic and psychological theories imply that individual choice best scales to aggregate choice, primary components of choice reflected in neural activity may support even more generalizable forecasts. Crowdfunding represents a significant and growing platform for funding new and unique projects, causes, and products. To test whether neural activity could forecast market-level crowdfunding outcomes weeks later, 30 human subjects (14 female) decided whether to fund proposed projects described on an Internet crowdfunding website while undergoing scanning with functional magnetic resonance imaging. Although activity in both the nucleus accumbens (NAcc) and medial prefrontal cortex predicted individual choices to fund on atrial-to-trial basis in the neuroimaging sample, only NAcc activity generalized to forecast market funding outcomes weeks later on the Internet. Behavioral measures from the neuroimaging sample, however, did not forecast market funding outcomes. This pattern of associations was replicated in a second study. These findings demonstrate that a subset of the neural predictors of individual choice can generalize to forecast market-level crowdfunding outcomes—even better than choice itself

    Evidence for an emotion maintenance deficit in schizophrenia. Psychiatry Res

    No full text
    Research has indicated that people with schizophrenia have deficits in reward representation and goaldirected behavior, which may be related to the maintenance of emotional experiences. Using a laboratorybased study, we investigated whether people with schizophrenia were able to maintain an emotional experience when given explicit instructions to do so. Twenty-eight people with schizophrenia and 19 people without completed a behavioral task judging their emotional experience of pictures held over a three second delay. This emotion maintenance task was compared to a subsequent in-the-moment emotion experience rating of each picture. In addition, all participants completed an analogous brightness experience maintenance and rating task, and patients completed a standardized visual working memory task. Participants with schizophrenia showed normal in-the-moment emotion experience of the emotion pictures; however, they showed decreased performance on emotion maintenance (for both positive and negative emotion) compared to participants without schizophrenia, even after controlling for brightness maintenance. The emotion maintenance deficit was not associated with visual brightness performance nor with performance on the visual working memory task; however, negative emotion maintenance was associated with an interview-based rating of motivation. These findings suggest that some aspects of impaired emotion maintenance in schizophrenia may be related to deficits in motivated behavior
    corecore