214 research outputs found

    Insulation of a synthetic hydrogen metabolism circuit in bacteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The engineering of metabolism holds tremendous promise for the production of desirable metabolites, particularly alternative fuels and other highly reduced molecules. Engineering approaches must redirect the transfer of chemical reducing equivalents, preventing these electrons from being lost to general cellular metabolism. This is especially the case for high energy electrons stored in iron-sulfur clusters within proteins, which are readily transferred when two such clusters are brought in close proximity. Iron sulfur proteins therefore require mechanisms to ensure interaction between proper partners, analogous to many signal transduction proteins. While there has been progress in the isolation of engineered metabolic pathways in recent years, the design of insulated electron metabolism circuits <it>in vivo </it>has not been pursued.</p> <p>Results</p> <p>Here we show that a synthetic hydrogen-producing electron transfer circuit in <it>Escherichia coli </it>can be insulated from existing cellular metabolism via multiple approaches, in many cases improving the function of the pathway. Our circuit is composed of heterologously expressed [Fe-Fe]-hydrogenase, ferredoxin, and pyruvate-ferredoxin oxidoreductase (PFOR), allowing the production of hydrogen gas to be coupled to the breakdown of glucose. We show that this synthetic pathway can be insulated through the deletion of competing reactions, rational engineering of protein interaction surfaces, direct protein fusion of interacting partners, and co-localization of pathway components on heterologous protein scaffolds.</p> <p>Conclusions</p> <p>Through the construction and characterization of a synthetic metabolic circuit <it>in vivo</it>, we demonstrate a novel system that allows for predictable engineering of an insulated electron transfer pathway. The development of this system demonstrates working principles for the optimization of engineered pathways for alternative energy production, as well as for understanding how electron transfer between proteins is controlled.</p

    Estrogens and genomic instability in human cancer cells-involvement of Src/Raf/Erk signaling in micronucleus formation by estrogenic chemicals

    Get PDF
    This article is available open access through the publisher’s website. Copyright @ 2008 The Authors.Reports of the ability of estrogenic agents such as 17β-estradiol (E2), estriol (E3) and bisphenol A (BPA) to induce micronuclei (MN) in MCF-7 breast cancer cells have prompted us to investigate whether these effects are linked to activation of the estrogen receptor (ER) α. Coadministration of tamoxifen and the pure ER antagonist ICI 182 780 to cells treated with E2 and E3 did not lead to significant reductions in micronucleus frequencies. Since these antiestrogens interfere with the transcriptional activity of the ER and block promotion of ER-dependent gene expression, it appears that this process is not involved in micronucleus formation. However, ER activation also triggers rapid signaling via the Src/Raf/extracellular signal-regulated kinase (Erk) pathway. When MCF-7 cells were exposed to E2 and BPA in combination with the specific kinase inhibitors pyrazolopyrimidine and 2′-amino-3′-methoxyflavone, reductions in micronucleus frequencies occurred. These findings suggest that the Src/Raf/Erk pathway plays a role in micronucleus formation by estrogenic agents. Enhanced activation of the Src/Raf/Erk cascade disturbs the localization of Aurora B kinase to kinetochores, leading to a defective spindle checkpoint with chromosome malsegregation. Using antikinetochore CREST antibody staining, a high proportion of micronucleus containing kinetochores was observed, indicating that such processes are relevant to the induction of MN by estrogens. Our results suggest that estrogens induce MN by causing improper chromosome segregation, possibly by interfering with kinase signaling that controls the spindle checkpoint, or by inducing centrosome amplification. Our findings may have some relevance in explaining the effects of estrogens in the later stages of breast carcinogenesis.European Commissio

    Progress report no. 4

    Get PDF
    Statement of responsibility on title-page reads: editors: M.J. Driscoll, D.D. Lanning, I. Kaplan, A.T. Supple ; contributors: A. Alvim, G.J. Brown, J.K. Chan, T.P. Choong, M.J. Driscoll, G. A. Ducat, I.A. Forbes, M.V. Gregory, S.Y. Ho, C.M. Hove, O. K. Kadiroglu, R.J. Kennerley, D.D. Lanning, J.L. Lazewatsky, L. Lederman, A.S. Leveckis, V.A. Miethe, P. A. Scheinert, A.M. Thompson, N.E. Todreas, C.P. Tzanos, and P.J. WoodIncludes bibliographical referencesProgress report; June 30, 1973U.S. Atomic Energy Commission contract: AT(11-1)225

    Progress report no. 3

    Get PDF
    Statement of responsibility on title-page reads: editors: M.J. Driscoll, D.D. Lanning, I. Kaplan; contributors: S. T. Brewer, G.J. Brown, P. Delaquil, M.J. Driscoll, G.A. Ducat, I.A. Forbes, M. V. Gregory, S.Y. Ho, M.S. Kalra, C.S. Kang, L.T. Kim, D.D. Lanning, J.L. Lazewatsky, T.C. Leung, E.A. Mason, N.R. Ortiz, N.C. Rasmussen, I.C. Rickard, K.D. Roberson, A.T. Supple, A.M. Thompson, and C.P. TzanosIncludes bibliographical referencesProgress report ; June 30, 1972U.S. Atomic Energy Commission contracts: AT(11-1)306

    Plk1 regulates mitotic Aurora A function through βTrCP-dependent degradation of hBora

    Get PDF
    Polo-like kinase 1 (Plk1) and Aurora A play key roles in centrosome maturation, spindle assembly, and chromosome segregation during cell division. Here we show that the functions of these kinases during early mitosis are coordinated through Bora, a partner of Aurora A first identified in Drosophila. Depletion of human Bora (hBora) results in spindle defects, accompanied by increased spindle recruitment of Aurora A and its partner TPX2. Conversely, hBora overexpression induces mislocalization of Aurora A and monopolar spindle formation, reminiscent of the phenotype seen in Plk1-depleted cells. Indeed, Plk1 regulates hBora. Following Cdk1-dependent recruitment, Plk1 triggers hBora destruction by phosphorylating a recognition site for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}SCF β - TrCP{\text{SCF}}^{{\text{ $ \beta $ - TrCP}}} \end{document}. Plk1 depletion or inhibition results in a massive accumulation of hBora, concomitant with displacement of Aurora A from spindle poles and impaired centrosome maturation, but remarkably, co-depletion of hBora partially restores Aurora A localization and bipolar spindle formation. This suggests that Plk1 controls Aurora A localization and function by regulating cellular levels of hBora

    Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation

    Get PDF
    Background: Cyanobacteria are potential sources of renewable chemicals and biofuels and serve as model organisms for bacterial photosynthesis, nitrogen fixation, and responses to environmental changes. Anabaena (Nostoc) sp. strain PCC 7120 (hereafter Anabaena) is a multicellular filamentous cyanobacterium that can "fix" atmospheric nitrogen into ammonia when grown in the absence of a source of combined nitrogen. Because the nitrogenase enzyme is oxygen sensitive, Anabaena forms specialized cells called heterocysts that create a microoxic environment for nitrogen fixation. We have employed directional RNA-seq to map the Anabaena transcriptome during vegetative cell growth and in response to combined-nitrogen deprivation, which induces filaments to undergo heterocyst development. Our data provide an unprecedented view of transcriptional changes in Anabaena filaments during the induction of heterocyst development and transition to diazotrophic growth. Results: Using the Illumina short read platform and a directional RNA-seq protocol, we obtained deep sequencing data for RNA extracted from filaments at 0, 6, 12, and 21 hours after the removal of combined nitrogen. The RNA-seq data provided information on transcript abundance and boundaries for the entire transcriptome. From these data, we detected novel antisense transcripts within the UTRs (untranslated regions) and coding regions of key genes involved in heterocyst development, suggesting that antisense RNAs may be important regulators of the nitrogen response. In addition, many 5' UTRs were longer than anticipated, sometimes extending into upstream open reading frames (ORFs), and operons often showed complex structure and regulation. Finally, many genes that had not been previously identified as being involved in heterocyst development showed regulation, providing new candidates for future studies in this model organism. Conclusions: Directional RNA-seq data were obtained that provide comprehensive mapping of transcript boundaries and abundance for all transcribed RNAs in Anabaena filaments during the response to nitrogen deprivation. We have identified genes and noncoding RNAs that are transcriptionally regulated during heterocyst development. These data provide detailed information on the Anabaena transcriptome as filaments undergo heterocyst development and begin nitrogen fixation

    Selection of Suitable Reference Genes for RT-qPCR Analyses in Cyanobacteria

    Get PDF
    Cyanobacteria are a group of photosynthetic prokaryotes that have a diverse morphology, minimal nutritional requirements and metabolic plasticity that has made them attractive organisms to use in biotechnological applications. The use of these organisms as cell factories requires the knowledge of their physiology and metabolism at a systems level. For the quantification of gene transcripts real-time quantitative polymerase chain reaction (RT-qPCR) is the standard technique. However, to obtain reliable RT-qPCR results the use and validation of reference genes is mandatory. Towards this goal we have selected and analyzed twelve candidate reference genes from three morphologically distinct cyanobacteria grown under routinely used laboratory conditions. The six genes exhibiting less variation in each organism were evaluated in terms of their expression stability using geNorm, NormFinder and BestKeeper. In addition, the minimum number of reference genes required for normalization was determined. Based on the three algorithms, we provide a list of genes for cyanobacterial RT-qPCR data normalization. To our knowledge, this is the first work on the validation of reference genes for cyanobacteria constituting a valuable starting point for future works

    Specialist group therapy for firesetting behaviour: evidence of a treatment effect from a non-randomised pilot trial with male prisoners

    Get PDF
    Despite huge societal costs associated with firesetting, no standardized therapy has been developed to address this hugely damaging behavior. This study reports the evaluation of the first standardized CBT group designed specifically to target deliberate firesetting in male prisoners (the Firesetting Intervention Programme for Prisoners; FIPP). Fifty-four male prisoners who had set a deliberate fire were referred for FIPP treatment by their prison establishment and psychologically assessed at baseline, immediately post treatment, and three-months post treatment. Prisoners who were treatment eligible yet resided at prison establishments not identified for FIPP treatment were recruited as Treatment as Usual controls and tested at equivalent time-points. Results showed that FIPP participants improved on one of three primary outcomes (i.e., problematic fire interest and associations with fire), and made some improvement on secondary outcomes (i.e., attitudes towards violence and antisocial attitudes) post treatment relative to controls. Most notable gains were made on the primary outcome of fire interest and associations with fire and individuals who gained in this area tended to self-report more serious firesetting behavior. FIPP participants maintained all key improvements at three-month follow up. These outcomes suggest that CBT should be targeted at those holding the most serious firesetting history

    Engineering the fatty acid synthesis pathway in Synechococcus elongatus PCC 7942 improves omega-3 fatty acid production

    Get PDF
    Background: The microbial production of fatty acids has received great attention in the last few years as feedstock for the production of renewable energy. The main advantage of using cyanobacteria over other organisms is their ability to capture energy from sunlight and to transform CO2 into products of interest by photosynthesis, such as fatty acids. Fatty acid synthesis is a ubiquitous and well-characterized pathway in most bacteria. However, the activity of the enzymes involved in this pathway in cyanobacteria remains poorly explored. Results: To characterize the function of some enzymes involved in the saturated fatty acid synthesis in cyanobacteria, we genetically engineered Synechococcus elongatus PCC 7942 by overexpressing or deleting genes encoding enzymes of the fatty acid synthase system and tested the lipid profile of the mutants. These modifications were in turn used to improve alpha-linolenic acid production in this cyanobacterium. The mutant resulting from fabF overexpression and fadD deletion, combined with the overexpression of desA and desB desaturase genes from Synechococcus sp. PCC 7002, produced the highest levels of this omega-3 fatty acid. Conclusions: The fatty acid composition of S. elongatus PCC 7942 can be significantly modified by genetically engineering the expression of genes coding for the enzymes involved in the first reactions of fatty acid synthesis pathway. Variations in fatty acid composition of S. elongatus PCC 7942 mutants did not follow the pattern observed in Escherichia coli derivatives. Some of these modifications can be used to improve omega-3 fatty acid production. This work provides new insights into the saturated fatty acid synthesis pathway and new strategies that might be used to manipulate the fatty acid content of cyanobacteria.Work in the FDLC laboratory was financed by the Spanish Ministry of Economy and Competitivity (MINECO) Grant BFU2014-55534-C2-1-P. MSM. was recipientof a Ph.D. fellowship (BES-2012-057387) from MINECO
    corecore