10 research outputs found

    A Coupled Equations Model for Epitaxial Growth on Textured Surfaces

    Full text link
    We have developed a continuum model that explains the complex surface shapes observed in epitaxial regrowth on micron scale gratings. This model describes the dependence of the surface morphology on film thickness and growth temperature in terms of a few simple atomic scale processes including adatom diffusion, step-edge attachment and detachment, and a net downhill migration of surface adatoms. The continuum model reduces to the linear part of the Kardar-Parisi-Zhang equation with a flux dependent smoothing coefficient in the long wavelength limit.Comment: 11 pages, 4 figures. Submitted to the Journal of Crystal Growt

    Direct observation of micron-scale ordered structure in a two-dimensional electron system

    Full text link
    We have applied a novel scanned probe method to directly resolve the interior structure of a GaAs/AlGaAs two-dimensional electron system in a tunneling geometry. We find that the application of a perpendicular magnetic field can induce surprising density modulations that are not static as a function of the field. Near six and four filled Landau levels, stripe-like structures emerge with a characteristic wave length ~2 microns. Present theories do not account for ordered density modulations on this length scale.Comment: 5 pages, 4 figures. To appear in Phys. Rev.

    Stress-driven instability in growing multilayer films

    Full text link
    We investigate the stress-driven morphological instability of epitaxially growing multilayer films, which are coherent and dislocation-free. We construct a direct elastic analysis, from which we determine the elastic state of the system recursively in terms of that of the old states of the buried layers. In turn, we use the result for the elastic state to derive the morphological evolution equation of surface profile to first order of perturbations, with the solution explicitly expressed by the growth conditions and material parameters of all the deposited layers. We apply these results to two kinds of multilayer structures. One is the alternating tensile/compressive multilayer structure, for which we determine the effective stability properties, including the effect of varying surface mobility in different layers, its interplay with the global misfit of the multilayer film, and the influence of asymmetric structure of compressive and tensile layers on the system stability. The nature of the asymmetry properties found in stability diagrams is in agreement with experimental observations. The other multilayer structure that we study is one composed of stacked strained/spacer layers. We also calculate the kinetic critical thickness for the onset of morphological instability and obtain its reduction and saturation as number of deposited layers increases, which is consistent with recent experimental results. Compared to the single-layer film growth, the behavior of kinetic critical thickness shows deviations for upper strained layers.Comment: 27 pages, 11 figures; Phys. Rev. B, in pres

    Epitaxial growth in dislocation-free strained alloy films: Morphological and compositional instabilities

    Full text link
    The mechanisms of stability or instability in the strained alloy film growth are of intense current interest to both theorists and experimentalists. We consider dislocation-free, coherent, growing alloy films which could exhibit a morphological instability without nucleation. We investigate such strained films by developing a nonequilibrium, continuum model and by performing a linear stability analysis. The couplings of film-substrate misfit strain, compositional stress, deposition rate, and growth temperature determine the stability of film morphology as well as the surface spinodal decomposition. We consider some realistic factors of epitaxial growth, in particular the composition dependence of elastic moduli and the coupling between top surface and underlying bulk of the film. The interplay of these factors leads to new stability results. In addition to the stability diagrams both above and below the coherent spinodal temperature, we also calculate the kinetic critical thickness for the onset of instability as well as its scaling behavior with respect to misfit strain and deposition rate. We apply our results to some real growth systems and discuss the implications related to some recent experimental observations.Comment: 26 pages, 13 eps figure

    Surface Localization of Buried III–V Semiconductor Nanostructures

    Get PDF
    In this work, we study the top surface localization of InAs quantum dots once capped by a GaAs layer grown by molecular beam epitaxy. At the used growth conditions, the underneath nanostructures are revealed at the top surface as mounding features that match their density with independence of the cap layer thickness explored (from 25 to 100 nm). The correspondence between these mounds and the buried nanostructures is confirmed by posterior selective strain-driven formation of new nanostructures on top of them, when the distance between the buried and the superficial nanostructures is short enough (d = 25 nm)

    Calibrated Image Appearance Reproduction

    No full text
    Managing the appearance of images across different display environments is a difficult problem, exacerbated by the proliferation of high dynamic range imaging technologies. Tone reproduction is often limited to luminance adjustment and is rarely calibrated against psychophysical data, while color appearance modeling addresses color reproduction in a calibrated manner, albeit over a limited luminance range. Only a few image appearance models bridge the gap, borrowing ideas from both areas. Our take on scene reproduction reduces computational complexity with respect to the state-of-the-art, and adds a spatially varying model of lightness perception. The predictive capabilities of the model are validated against all psychophysical data known to us, and visual comparisons show accurate and robust reproduction for challenging high dynamic range scenes
    corecore