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The genome sequence of Atlantic cod reveals a
unique immune system
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Atlantic cod (Gadus morhua) is a large, cold-adapted teleost that sus-
tains long-standing commercial fisheries and incipient aquaculture1,2.
Here we present the genome sequence of Atlantic cod, showing
evidence for complex thermal adaptations in its haemoglobin gene
cluster and an unusual immune architecture compared to other
sequenced vertebrates. The genome assembly was obtained exclu-
sively by 454 sequencing of shotgun and paired-end libraries, and
automated annotation identified 22,154 genes. The major histo-
compatibility complex (MHC) II is a conserved feature of the
adaptive immune system of jawed vertebrates3,4, but we show that
Atlantic cod has lost the genes for MHC II, CD4 and invariant chain
(Ii) that are essential for the function of this pathway. Nevertheless,
Atlantic cod is not exceptionally susceptible to disease under
natural conditions5. We find a highly expanded number of
MHC I genes and a unique composition of its Toll-like receptor
(TLR) families. This indicates how the Atlantic cod immune system
has evolved compensatory mechanisms in both adaptive and innate
immunity in the absence of MHC II. These observations affect
fundamental assumptions about the evolution of the adaptive
immune system and its components in vertebrates.

We sequenced the genome of a heterozygous male Atlantic cod
(NEAC_001, Supplementary Notes 1 and 2), applying a whole-
genome shotgun approach to 403 coverage (estimated genome size
of 830 megabases (Mb), Supplementary Note 4 and Supplementary
Fig. 2) using 454 technology (Supplementary Note 3). Two programs
(Newbler6 and Celera7, Supplementary Notes 5 and 6) produced
assemblies with short contigs, yet with scaffolds of comparable size to
those of Sanger-sequenced teleost genomes (Supplementary Note 10 and
Supplementary Fig. 8). Although fragmentation due to short tandem
repeats is difficult to address (Supplementary Note 7), we resolved
numerous gaps attributable to heterozygosity (Supplementary Note 8).
The assemblies differ in scaffold and contig length (Table 1), although
their scaffolds align to a large extent (Supplementary Note 9 and Sup-
plementary Fig. 7). We obtained about one million single nucleotide
polymorphisms (SNPs) by mapping 454 and Illumina reads from the
sequenced individual to the Newbler assembly (Supplementary Note 11).
Both assemblies cover more than 98% of the reads from an extensive
transcriptome data set, indicating that the proteome is well represented
(Supplementary Note 13). The assemblies are consistent with four

independently assembled bacterial artificial chromosome (BAC) insert
clones (Supplementary Note 14 and Supplementary Fig. 9), and with
the expected insert size of paired BAC-end reads (Supplementary Note
15 and Supplementary Fig. 10).

A standard annotation approach based on protein evidence was
complemented by a whole-genome alignment of the Atlantic cod with
the stickleback (Gasterosteus aculeatus), after repeat-masking 25.4% of
the Newbler assembly (Supplementary Note 16 and Supplementary
Table 6). In this way, 17,920 out of 20,787 protein-coding stickleback
genes were mapped onto reorganized scaffolds (Supplementary Note 17).
Additional protein-coding genes, pseudogenes and non-coding RNAs
were annotated using the standard Ensembl pipeline. These approaches
resulted in a final gene set of 22,154 genes (Supplementary Table 7).
Comparative analysis of gene ontology classes indicates that the major
functional pathways are represented in the annotated gene set
(Supplementary Note 18 and Supplementary Fig. 11). We anchored
332 Mb of the Newbler assembly to 23 linkage groups of an existing
Atlantic cod linkage map using 924 SNPs8 (Supplementary Note 19 and
Supplementary Table 8). These linkage groups have distinct orthology
to chromosomes of other teleosts, on the basis of the number of co-
occurring genes, showing that the whole-genome shotgun assembly
reflects the expected chromosomal ancestry (Fig. 1, Supplementary
Note 20 and Supplementary Table 9).
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Table 1 | Assembly statistics
Number Bases (Mb) N50L (bp)* N50 (n){ ML (bp){

Newbler

Contigs1 284,239 536 2,778 50,237 76,504
Scaffolds 6,467 611 687,709 218 4,999,318
Entire assemblyI 157,887 753 459,495 344 4,999,318

Celera

Contigs1 135,024 555 7,128 19,938 117,463
Scaffolds 3,832 608 488,312 373 2,810,583
Entire assemblyI 17,039 629 469,840 395 2,810,583

*Minimum sequence length in which half of the assembled bases occur.
{Number of sequences with lengths of N50L or longer.
{Maximum length.
1Contigs longer than 500 bp.
IScaffolds and unplaced contigs.
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Well-studied haemoglobin polymorphisms in Atlantic cod are indi-
cative of functional molecular adaptation to thermal variation9–12. The
genome contains nine a- and b-globin genes that are organized in two
unlinked clusters, b5–a1–b1–a4 and b3–b4–a2–a3–b2 (refs 13, 14).
We discovered an indel polymorphism of 73 base pairs (bp) in the
intergenic promoter region of the a1–b1 globin pair (Fig. 2a and
Supplementary Note 21). This promoter polymorphism occurs in
highly significant linkage disequilibrium with two known polymorphic
sites in the b1 gene, the Val55Met and Ala62Lys substitutions1, in eight
Atlantic cod populations (Supplementary Note 22 and Supplementary
Fig. 12). In fact, in the three most northern Atlantic populations and in
both Baltic populations, the cod b1-globin gene predominantly occurs
as a single homozygous genotype consisting of the long promoter and
the Val 55–Ala 62 allele (Supplementary Table 10). By placing the two
promoter variants in front of a luciferase reporter gene and transfecting
the constructs into salmon kidney cells (Supplementary Note 23), we
found that temperature and promoter type have a significant inter-
action effect (generalized linear model, F2, 36 5 7.85, P 5 0.007, Fig. 2b)
and that the long promoter has twofold higher transcriptional activity
compared to the short promoter at 15 uC and 20 uC. Increased globin
synthesis of the Val 55–Ala 62 allele would compensate for its lower
oxygen affinity10,11 at high temperatures. Thus, the promoter poly-
morphism provides a molecular compensatory mechanism that helps
to maintain the total oxygen-carrying capacity15. The tight linkage
between the two types of polymorphism provides a compelling
example of the coevolution of structural and regulatory adaptation,
and highlights the relationship between temperature and functional
molecular variation in the haemoglobin system16.

The Atlantic cod immune system has unusual properties that set it
apart from that of other teleosts: high levels of IgM17, a minimal antibody

response after pathogen exposure5,17,18 and abundant phagocytic neu-
trophils in the peripheral blood19,20. Despite speculation, the exact causes
for these differences remain unknown5. We found that most genes
involved in the vertebrate immune response are present in Atlantic
cod (Supplementary Note 24, Supplementary Fig. 13 and Supplemen-
tary Table 11). Nevertheless, we did not find genes for the MHC II
isoforms, their assembly and trafficking chaperone Ii21 and the
MHC II-interacting protein CD4, which is essential for helper T-cell
activation. By comparing a comprehensive set of vertebrate MHC II,
CD4 and Ii sequences to the genome assemblies and all unassembled
454 and Illumina sequencing reads (a data set of about 49.5 gigabases),
we detected a truncated pseudogene for CD4 (Supplementary Note 25),
which is located in a region of conserved synteny (Supplementary Note
27 and Supplementary Fig. 18). No traces of MHC II and Ii were found
in syntenous regions (Supplementary Note 27 and Supplementary Figs
16, 17, 19 and 20) and quantitative PCR (qPCR) targeting a conserved
domain in MHC II did not amplify the target sequence (Supplementary
Note 26 and Supplementary Fig. 15). The absence of MHC II and Ii, and
the pseudogenic nature of CD4, show that Atlantic cod has lost the
function of the classical pathway for adaptive immunity against bacterial
and parasitic infections. Nevertheless, Atlantic cod deals adequately
with its prevailing pathogen load in its natural ecological settings5.
Previous transcriptional (complementary DNA) studies in Atlantic
cod have indicated an expansion of the number of MHC I loci22,23. By
targeting the conserved MHC I a3 domain in genomic DNA using
qPCR, we quantified more accurately the number of loci belonging to
the teleost U-lineage24 (Supplementary Note 28). Notably, Atlantic cod
has about 100 classical MHC I loci, which is a highly expanded number
compared to other teleosts (Fig. 3a). A phylogenetic analysis of teleost
MHC I sequences supports the existence of two clades in cod (Fig. 3b
and Supplementary Note 29). Within each clade, the mutation patterns
show statistically significant signs of positive selection that are indicative
of subfunctionalization. These findings indicate that loss of MHC II
functionality has coincided with a more versatile usage of the cytosolic
pathway of MHC I. Two different MHC I antigen-presentation path-
ways—the classical pathway and the alternative cross-presentation
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Figure 2 | Functional haemoglobin polymorphisms in Atlantic cod.
a, Schematic of the head-to-head organized a1 and b1 globin genes, the
intergenic promoter region and transcription start sites (red arrows). A
promoter polymorphism consisting of a 73-bp indel (red box) segregates in
linkage disequilibrium with two amino-acid-substitution polymorphisms
(vertical lines) at positions 55 and 62 in b1 globin that affect its oxygen-binding
affinity. This linkage disequilibrium results in two predominant haplotypes,
long–Val–Ala and short–Met–Lys. b, Normalized luciferase luminescence ratios
in salmon kidney cells. Cells were transfected using the long promoter (black
circles) or the short promoter (white circles) and incubated at 4 uC, 15 uC or
20 uC (n 5 3 for each treatment level). Error bars show 95% confidence intervals.
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Figure 1 | Synteny between Atlantic cod and selected teleosts. The co-
occurrence of orthologous genes (with a minimum of 50% sequence identity
over 50% of the alignment, sphere size indicates the numbers of syntenic genes)
in 23 Atlantic cod linkage groups8 (x-axis) reveals synteny with the
chromosomes of four teleosts (y-axis). Several genes located on the stickleback
chromosome XIV, tetraodon chromosome 4 and medaka chromosome 12
indicate a lineage-specific chromosomal rearrangement in Atlantic cod.
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pathway—can initiate immune responses in mammals25. The cross-
presentation pathway represents a structural and cellular modification
of the MHC I machinery that allows activation of CD81 T cells upon
bacterial infection. The cytokine gene profile of Atlantic cod (Sup-
plementary Table 11) supports the possibility of generating different
subsets of CD81 T cells that either provide direct protection or regulate
other immune cells, and thus compensate for the loss of CD41 T cells.

In addition to the MHC I expansion, we found an unusual composi-
tion of the highly conserved TLR families that have a fundamental role
in the innate immune response and the initial detection of pathogens.
Teleost TLR-encoding genes occur in well-supported phylogenetic
clusters, most of which share functional properties with mammalian
orthologues, although some are fish-specific26. The Atlantic cod TLR
genes form monophyletic groups within the known teleost functional
groups (Fig. 4, Supplementary Note 30 and Supplementary Fig. 22).
Genes for several TLRs that recognize bacterial surface antigens (TLR1,
TLR2 and TLR5) are, however, absent, leaving only the teleost-specific

TLR14 and TLR18 as members of the TLR1 family in Atlantic cod.
Moreover, several families of TLRs that recognize nucleic acids (TLR7,
TLR8, TLR9 and TLR22) have markedly expanded, resulting in the
highest number of TLRs found in a teleost so far. This TLR repertoire
indicates that the Atlantic cod immune system relies relatively heavily
on nucleic-acid-detecting TLRs to recognize bacterial pathogens.
Notably, the gene expansion of TLR9 coincides with an expansion of
interleukin-8 genes (IL-8, Supplementary Table 11). IL-8 is an import-
ant chemokine in the innate immune response and is directly induced
by TLR9 in human neutrophils27. The corresponding expansions of
IL-8 and TLR9 indicate that this signalling cascade is particularly
important in Atlantic cod.

The loss of MHC II function and lack of a CD41 T-cell response
represent a fundamental change in how the adaptive immune system is
initiated and regulated in Atlantic cod. The marked expansion of
MHC I genes and unusual TLR composition signify a shift of its
immune system in handling microbial pathogens. An expanded
MHC I repertoire in the presence of a non-polymorphic MHC II is
found in an evolutionarily-distant vertebrate, the axolotl (Ambystoma
mexicanum)28,29. These observations indicate that anomalous immune
systems (possibly analogous to that of Atlantic cod) have evolved
independently. Additionally, we did not recover evidence for
expressed MHC II, CD4 and Ii in the transcriptomes of three other
gadoids, indicating that the unusual immune system is a derived char-
acteristic of the gadoid lineage (Supplementary Tables 18 and 19).

We have provided the first annotated genome of a species that
supports extensive fisheries and is on the verge of becoming an import-
ant aquaculture species. This work provides a major foundation for
addressing key issues related to the management of natural Atlantic
cod populations, such as the concept of fisheries-induced evolution,
which dictates that selective harvesting can change the evolutionary
trajectory of major life-history traits of natural populations30.
Moreover, our novel findings regarding the immune system will allow
for more targeted vaccine development, aiding disease management
and the process of domestication of Atlantic cod. These findings
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classical U-lineage MHC I only. The other teleost sequences were obtained
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change fundamental assumptions regarding the evolution of the ver-
tebrate immune system.

METHODS SUMMARY
Detailed methods on the sequencing and assembly of data from genomic and
transcriptomic origins; annotation, synteny analyses, transfection experiments,
bioinformatic analyses and phylogenetic analyses presented in this manuscript
are described in the Supplementary Information.
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