1,151 research outputs found

    4D quantum black hole physics from 2D models?

    Get PDF
    Minimally coupled 4D scalar fields in Schwarzschild space-time are considered. Dimensional reduction to 2D leads to a well known anomaly induced effective action, which we consider here in a local form with the introduction of auxiliary fields. Boundary conditions are imposed on them in order to select the appropriate quantum states (Boulware, Unruh annd Israel-Hartle-Hawking). The stress tensor is then calculated and its comparison with the expected 4D form turns out to be unsuccessful. We also critically discuss in some detail a recent controversial result appeared in the literature on the same topic.Comment: latex, 13 pages; misprints corrected, references adde

    Particle production and transplanckian problem on the non-commutative plane

    Get PDF
    We consider the coherent state approach to non-commutativity, and we derive from it an effective quantum scalar field theory. We show how the non-commutativity can be taken in account by a suitable modification of the Klein-Gordon product, and of the equal-time commutation relations. We prove that, in curved space, the Bogolubov coefficients are unchanged, hence the number density of the produced particle is the same as for the commutative case. What changes though is the associated energy density, and this offers a simple solution to the transplanckian problem.Comment: Minor typos corrected, references added. Accepted for publication by Modern Physics Letter

    Effective dynamics of self-gravitating extended objects

    Full text link
    We introduce an effective Lagrangian which describes the classical and semiclassical dynamics of spherically symmetric, self-gravitating objects that may populate the Universe at large and small (Planck) scale. These include wormholes, black holes and inflationary bubbles. We speculate that such objects represent some possible modes of fluctuation in the primordial spacetime foam out of which our universe was born. Several results obtained by different methods are encompassed and reinterpreted by our effective approach. As an example, we discuss: i) the gravitational nucleation coefficient for a pair of Minkowski bubbles, and ii) the nucleation coefficient of an inflationary vacuum bubble in a Minkowski backgroundComment: 13 pages, no figures, ReVTe

    Generalized Virasoro anomaly and stress tensor for dilaton coupled theories

    Get PDF
    We derive the anomalous transformation law of the quantum stress tensor for a 2D massless scalar field coupled to an external dilaton. This provides a generalization of the Virasoro anomaly which turns out to be consistent with the trace anomaly. We apply it together with the equivalence principle to compute the expectation values of the covariant quantum stress tensor on a curved background. Finally we briefly illustrate how to evaluate vacuum polarization and Hawking radiation effects from these results.Comment: enlarged version of hep-th/0307096 containing the quantum stress tensor for arbitrary geometries and discussion of the Hawking effect. To appear in Phys. Lett.

    Correlation patterns from massive phonons in 1+1 dimensional acoustic black holes: A toy model

    Full text link
    Transverse excitations in analogue black holes induce a mass like term in the longitudinal mode equation. With a simple toy model we show that correlation functions display a rather rich structure characterized by groups of parallel peaks. For the most part the structure is completely different from that found in the massless case.Comment: 40 pages, 13 figures. Minor changes and corrections Phys. Rev. D versio

    A model of radiating black hole in noncommutative geometry

    Full text link
    The phenomenology of a radiating Schwarzschild black hole is analyzed in a noncommutative spacetime. It is shown that noncommutativity does not depend on the intensity of the curvature. Thus we legitimately introduce noncommutativity in the weak field limit by a coordinate coherent state approach. The new interesting results are the following: i) the existence of a minimal non-zero mass to which black hole can shrink; ii) a finite maximum temperature that the black hole can reach before cooling down to absolute zero; iii) the absence of any curvature singularity. The proposed scenario offers a possible solution to conventional difficulties when describing terminal phase of black hole evaporation.Comment: 10 pages, 4 figure

    Hawking radiation from extremal and non-extremal black holes

    Get PDF
    The relationship between Hawking radiation emitted by non extremal and extremal Reissner Nordstrom black holes is critically analyzed. A careful study of a series of regular collapsing geometries reveals that the stress energy tensor stays regular in the extremal limit and is smoothly connected to that of non extremal black holes. The unexpected feature is that the late time transients which played little role in the non extremal case are necessary to preserve the well defined character of the flux in the extremal case. The known singular behavior of the static energy density of extremal black holes is recovered from our series by neglecting these transients, when performing what turns out to be an illegitimate late time limit. Although our results are derived in two dimensional settings, we explain why they should also apply to higher dimensional black holes.Comment: 18 pages, late

    Two-dimensional black holes in accelerated frames: quantum aspects

    Full text link
    By considering charged black hole solutions of a one parameter family of two dimensional dilaton gravity theories, one finds the existence of quantum mechanically stable gravitational kinks with a simple mass to charge relation. Unlike their Einsteinian counterpart (i.e. extreme Reissner-Nordstr\"om), these have nonvanishing horizon surface gravity.Comment: 18 pages, harvmac, 2 figure
    • …
    corecore