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PARTICLE PRODUCTION AND TRANSPLANCKIAN PROBLEM
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We consider the coherent state approach to non-commutativity, and we derive from it an

effective quantum scalar field theory. We show how the non-commutativity can be taken

in account by a suitable modification of the Klein-Gordon product, and of the equal-time

commutation relations. We prove that, in curved space, the Bogolubov coefficients are

unchanged, hence the number density of the produced particle is the same as for the

commutative case. What changes though is the associated energy density, and this offers

a simple solution to the transplanckian problem.

Keywords: Minimal length, QFT on curved space, transplanckian problem
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1. Introduction

In recent years, we have seen many proposals aimed to quantize consistently the

gravitational field from fundamental principles. From a phenomenological point of

view, a more modest approach consists in introducing reasonable modifications to

quantum field theory and look for observable consequences in black holes or in-

flationary models. For example, one can construct a theory where the dispersion

relations depart from linearity above a certain energy scale, thus breaking local

Lorentz invariance. This approach is motivated by analogue models of gravity in

condensed matter systems 1, by deformations of the Lorentz group 2, or by tensor-

vector models of gravity 3. Modified dispersion relations were considered in the

context of renormalization, and particle production in curved spacetime 4,5,6,7. In

the latter case, the common result is that the thermal spectrum seen from an accel-

erated detector or from an asymptotic observer on a black hole background is only

marginally affected by non-linear dispersion relations 8,9,10.

There exists an alternative proposal, based on a new symmetry of the path

integral duality 11. In this case, the modification directly brings a minimal length

in the propagator, which becomes finite in the ultraviolet regime. Starting from

different hypothesis, the same propagator was reconsidered also in other works 12.

In both cases, the form of the field modes, associated to the modified propagator is

unknown, therefore it is difficult to evaluate exactly some effects.

1
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In contrast to these proposals, here we would like to study how quantum field

theory is modified when spacetime has an intrinsic non-commutative structure.

This topic has been intensively investigated by assuming that non-commutative

effects in field theory are implemented by replacing the ordinary product among

functions with the so-called star-product 13,14,15,16,17. Instead, in this paper we

would like to take onboard an alternative point of view, and consider the coherent

state approach to non-commutativity introduced in a series of papers by E. Spallucci

and collaborators 18,19,20,21. As we will briefly explain below, this model does

not need the star-product, since all non-commutative effects are encoded in the

Gaussian damping of the field modes a. As a result, the field propagator is finite in

the ultraviolet limit, but the dispersion relation is the same as the relativistic one.

Compared to the wider class of modified theories mentioned above, this proposal

has a stronger predictive power, as both field modes and propagators are known.

For example, this model has been already studies in connection with the Casimir

effect 24, and inspired several works on black holes 25,26,27,28,29,30,31,32,33,34,

Unruh effect 35, inflation 36, and quantum gravity 37.

The plan of the paper is the following: in the next section, we recall the main

features of the coherent state approach to non-commutativity, and we construct a

massive scalar field living on a two-dimensional Minkowski plane. In section III,

we consider the generalization in curved space, and we show that Bogolubov trans-

formations are not affected in the fourth section. In section IV, we look at the

transplanckian problem of a black hole and compare with analogous calculations

for the Unruh effect. Finally, we conclude the paper with few remarks.

2. Non-commutative field theory

To begin with, let ẑ1, ẑ2 be the coordinate operators of a two-dimensional non-

commutative plane, that satisfy the algebra 18

[ẑ1, ẑ2] = iθ . (1)

Generalizations to higher even-dimensional spaces are straightforward 19. One can

define the new operators

Â = ẑ1 + iẑ2 , Â† = ẑ1 − iẑ2 , (2)

which satisfy the canonical commutator [Â, Â†] = 2θ. The coherent states associated

to these operators are the states |α〉 such that Â|α〉 = α|α〉. Their explicit form reads

|α〉 = exp

[

1

θ

(

α∗Â− αÂ†
)

]

|0〉 , (3)

and one can show that 〈α|α〉 = 1. Physical, commuting coordinates are c-numbers,

defined as the expectation values on coherent states of the coordinate operators,

aOn mathematical grounds, in this theory the star-product can be seen as replaced by the so-called

Voros product 22,23.
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namely

x1 ≡ 〈α|ẑ1|α〉 = Re(α) , x2 ≡ 〈α|ẑ2|α〉 = Im(α) . (4)

The vector (x1, x2) is interpreted as the mean position of the point particle on the

non-commutative plane. So, how does non-commutativity show up in quantum field

theory? The answer lies essentially in the fact that, now, every function F (~x) must

be promoted to an operator F̂ (ẑ1, ẑ2) evaluated on coherent states. In particular,

this holds for the monochromatic wave function, which is turned into the operator

exp(i~p · ~̂z ), where ~p = (p1, p2) is a real vector. After having defined the transverse

momenta p± = (p1± ip2)/2, one can utilize the Baker-Campbell-Hausdorff formula

to find b

〈α|eip1 ẑ1+ip2 ẑ2 |α〉 = 〈α|e i
2
p+Â†

e
i
2
p−Â|α〉e

p+p−
4

[A†,A] = ei~p·~x−
θ
4
(p2

1+p2
2) . (5)

We see that the main effect of the intrinsic non-commutative structure of space

resides in the damping term embedded in the plane wave operator. We will show

later that this term can also be interpreted as a deformation of the measure in the

Fourier integral. There is one crucial aspect in the expression (5): the relative sign

in the quadratic term (p21 + p22) is independent of the signature of the metric on the

plane. It simply arises from the product p−p+, hence its form is the same in both

Euclidean and Lorentzian signatures.

Now, let us consider a scalar field φ(t, x) with mass m, which propagates on a

two-dimensional Minkowski space, and is governed by the standard Klein-Gordon

equation c

(� +m2)φ(t, x) = 0 (6)

According to the prescriptions above, the positive frequency field modes are modified

according to

up(t, x) =
e−ℓ2(ω2+p2)

√
4πω

e−iωt+i~p·~x . (7)

In this expression, we identify p1 with ω =
√

p2 +m2, ℓ2 = θ/4, and we set p2 = p.

As the modes are solutions to Eq. (6), we define the corresponding Klein-Gordon

product 38, which, however, must be modified to accommodate to the different

normalization of the modes. Thus, we have a “damped” δ-function

(up, up′)=−i
∫

dx(up
←→
∂t u

∗
p′) = e−2ℓ2(ω2+p2)δ(p− p′), (8)

bWe stress that the components of ~p are c-numbers, so they act trivially on the coherent states.

There is a more formal approach in terms of non-commutative Fock space, but the results are the

same 22.
cIn our notation, ds2 = dt2 − dx2.
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and this reflects the fact that coherent states are normalized but not orthogonal.

The scalar field can be represented as the usual mode sum

φ(t, x) =

∫

d~p√
4πω

[

âpup(t, x) + â†pu
∗
p(t, x)

]

, (9)

where âp is the annihilation operator, which fulfills the standard rule [âp, â
†
p′ ] =

4πωδ(p− p′). It follows that the equal-time commutator reads

[φ(t, x), φ̇(t, x′)]=
i

4
√
πℓ

e−2ℓ2m2−(x−x′)2/16ℓ2 . (10)

In the vanishing ℓ limit, the right-hand side smoothly tends to iδ(x − x′). The

Wightman’s positive frequency function can be determined in the usual way, and

the result is

G+(xµ, x′µ) ≡ 〈0|φ(xµ)φ(x′µ)|0〉 =
∫

d~p

4πω
e−2ℓ2(ω2+p2)−ipµ(x

µ−x′µ) , (11)

from which it follows that the Feynman propagator reads

GF (x
µ, x′µ) = −i

∫

d~p

4πω
e−2ℓ2(ω2+p2)

[

θ(t−t′)e−ipµ(x
µ−x′µ)+ θ(t′− t)eipµ(x

µ−x′µ)
]

.(12)

This expression can be derived from the integral (for p1 = ω and p2 = p)

GF (x
µ, x′µ) = i

∫

d2p

(2π)2
e−2ℓ2(p2

1+p2
2)−ipµ(x

µ−x′µ)

p21 − p22 −m2
, (13)

from which we can easily read off the momentum space propagator

G̃F (p1, p2) =
e−2ℓ2(p2

1+p2
2)

p21 − p22 −m2
, (14)

which is the same found via path integral quantization 18. It is easy to check that

it satisfies the equation

(�+m2)GF (x
µ, x′µ) = − i

8πℓ2
e−(∆t2+∆x2)/8ℓ2 , (15)

where ∆t2 = (t− t′)2 and ∆x2 = (x− x′)2. The right-hand side becomes the usual

δ-function for ℓ→ 0.

The above integrals are not trivial, and it is difficult to find an expression for the

Lorentzian propagator in coordinate space. However, it is easy to find it in Euclidean

space, and for many applications this is sufficient to obtain valuable results. The

Euclidean version of (14) that we would have obtained by working on a Euclidean

non-commutative plane, can be written in the Schwinger formalism as

G̃E
F (p1, p2) =

e−2ℓ2(p2
1+p2

2)

p21 + p22 +m2
= eℓ

2m2

∫ ∞

ℓ2
ds e−s(p2

1+p2
2+m2) . (16)

The corresponding Euclidean propagator in coordinate space is

GE
F (x

µ, x′µ) = eℓ
2m2

∫ ∞

ℓ2
ds

∫ ∞

0

dp1dp2
2π2

e−ip1x1−ip2x2−s(p2
1+p2

1+m2) . (17)

By integrating, we find the following cases:
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• for ℓ = 0 we have the usual massive two-dimensional scalar propagator,

which shows a logarithmic divergence as m→ 0 or (∆x2
1 +∆x2

2)→ 0;

• for ℓ 6= 0 and m = 0, the integral does not converge for s → ∞. However,

one can integrate between ℓ2 and some arbitrary L2 > ℓ2, and then ex-

pand for (∆x2
1 +∆x2

2)→ 0. The leading term of the series is constant and

proportional to ln(K/L), thus it is irrelevant when quantities obtained by

differentiating the propagator, such as the stress tensor, are computed. We

note that this situation is peculiar to the two-dimensional case only, as the

integral contains the factor 1/s. In four dimensions, this factor is 1/s2 so

the integral converges for s→∞ 35;

• in the case ℓ 6= 0 and m 6= 0, the integral cannot be computed analyti-

cally. However, a simple numerical computation shows that the propagator

is finite in the coincident limit for any non-zero ℓ, and this confirms the ul-

traviolet regulating nature of the minimal length induced in the field theory

by non-commutativity.

Let us now look at the energy density. The Hamiltonian operator for the scalar field

becomes

Ĥ =
1

2

∫

d2x
[

φ̇2 + (~∇φ)2 +m2φ2
]

=
1

2

∫

d~p e−2ℓ2(p2+ω2)ω
(

âpâ
†
p + â†pâp

)

.(18)

This expression clearly renders unnecessary the normal ordering, usually employed

to eliminate the divergent zero-point energy. In fact

〈0|Ĥ |0〉 = e−2ℓ2m2

∫ ∞

0

dp e−4ℓ2p2√

p2 +m2 , (19)

which can be shown numerically to be convergent for any m > 0. In the massless

case, the above integral gives simply (8ℓ2)−2.

3. Particle production

We now turn to the problem of the quantization of the field on a curved space.

It is well known that, in a general space-time, one can find more than one com-

plete orthonormal sets of modes, and construct the fields as different mode sums.

The transformation between two inequivalent basis generates non trivial Bogolubov

coefficients, which can be interpreted as a sign of particle production 38. Let us

assume that the Klein-Gordon product (8) can be locally carried over curved space,

and let ui and vi be two basis of normal modes of the type (7). The scalar field can

be represented as

φ(x) =
∑

i

( âiui + h.c.) =
∑

j

( b̂jvj + h.c.) . (20)

Here, â and b̂ are the inequivalent annihilation operators, which are assumed to

satisfy the usual commutation rules. We can write the damped modes as ui = guUi

and vi = gvVi, where Ui = ui(ℓ = 0) and Vi = vi(ℓ = 0) are the standard modes
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of the commutative theory, and gu,v are the Gaussian damping factors. From what

we have seen above, the Klein-Gordon product is modified according to (ui, uj) =

g2u(Ui, Uj), together with the analogous expression for (vi, vj). Since the modes Ui

and Vj are related by the linear transformations 38

Vj =
∑

i

(αijUi + βijU
∗
i ) , (21)

it follows that

vj =
gv
gu

∑

i

(αijui + βiju
∗
i ) , ui =

gu
gv

∑

j

(α∗
ijvj − βjiv

∗
j ) . (22)

It is not difficult to prove that

b̂l =
∑

i

(α∗
ilâi − β∗

ilâ
†
i ) , (23)

which means that the relation between the two sets of annihilation and creation

operators are not affected by the Gaussian damping factors. Most importantly,

we find that, despite the Klein-Gordon product is modified according to (8), the

Bogolubov coefficients are unchanged with respect to the commutative case, since

bjl = −
1

gugv
(vj , u

∗
l ) ≡ (Vj , U

∗
l ) , (24)

and a similar expression holds for αij . From this almost trivial argument, we deduce

that the non-commutative structure of spacetime, when treated in terms of coher-

ent states, does not affect the production of particles, given that the Bogolubov

coefficients, and in particular β, are not modified with respect to the commutative

case. However, the energy density associated to these particle is very different when

compared the commutative case. In fact, even though the expectation value of the

number density operator 〈Ni〉 =
∑

j

|βij |2 is unchanged, the energy density associ-

ated to it is given by Eq. (18), which, for the i-th particle species can be written

as

Ĥi =
1

2

∫

d~p e−2ℓ2(p2+ω2)ω

(

1

2
+ N̂i

)

. (25)

Therefore, even if there is a conspicuous production of high frequency particles,

their contribution to the total energy density is suppressed.

The fact that particle production is not affected by non-commutativity has sev-

eral positive consequences. In inflationary models, this result suggests that the spec-

trum of primordial perturbations is unchanged despite the high energy modifications

on the Feynman propagator. Moreover, gravitons and particles produced during a

transition between two different cosmological eras are indistinguishable from the

ones obtained in the commutative case. Thus, a priori, there are no observations

that can rule out, so far, this theory.
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4. Transplanckian problem

In the case of black holes, it is well-known that the Hawking flux measured by an

asymptotic observer derives from an accumulation of in-modes of arbitrarily high

frequency 1. This aspect has always created some unease as it entails arbitrarily

high energies, which render dubious the validity of the theory itself. However, non-

commutative effects prevent this problem, as we quickly show below.

When a free-falling observer near the horizon measures the frequency Ω of the

field modes φ ∼ (4πΩ)−1/2 exp(iΩt− iΩx) finds

Ω ∝ ω

(

1− 2M

r

)−1

, (26)

where ω is the frequency measured by an asymptotic observer, M is the mass of

the hole, and r is the radial coordinate of the Schwarzschild metric, which tend

to 2M as we approach the horizon at rh = 2M 1. The free-falling observer can

locally treat φ as a Minkowski field, thus its energy density is the sum of the energy

~Ω of each mode. As this diverges when the observer approaches the horizon, one

expect that this huge energy backreacts against the metric, thus invalidating the

initial hypothesis that the field is a test field propagating on a fixed background.

However, as we have shown above, when non-commutativity is switched on, each

mode is equipped with a damping factor of the form exp(−4ℓ2Ω2) d. Therefore, as

the local frequency increases, the mode and its energy is increasingly suppressed,

and the energy density of the field is naturally bounded by the scale 1
ℓ .

These results can explain the apparent contradiction between what was found

above and the results on the Unruh effect 35. In this work, the authors find that the

spectrum of the particles seen by a uniformly accelerated detector is suppressed and

no longer thermal, when the propagator is modified according to Eq. (14). Thus,

in contrast with most models with a minimal length, where the Unruh effect is

robust 10,12,39, the Gaussian damping in the propagator has a dramatic impact

on the spectrum. This fact can lead to think that if the Unruh effect is calculated

via Bogolubov transformations, rather than with an accelerated detector, the result

would be the same as for the commutative case, and hence in contradiction with the

findings on the Unruh effect. However, in this work, what is found to be suppressed

is, in fact, the response rate, which is nothing but an energy flux. Therefore there

is no contradiction because here we proved that the energy density of the produced

particles is suppressed, and so it must be also its flux through the detector.

5. Conclusions

In this paper we constructed the field theory of a massive scalar field on the non-

commutative plane, by mode analysis. The results coincide with the path integral

dFor simplicity, we consider massless fields, for which ω = p, as the dispersion relation is not

modified.
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approach, and clarified the relation between the Euclidean and Lorentzian propaga-

tor. We then used this field theory to tackle the transplanckian problem for a black

hole. The main result is that the fuzziness on the manifold puts an upper limit on

the energy density that can be stored near the horizon by a free-falling observer.

The quantum backreaction on the geometry of the black hole can in principle be

calculated with a suitable effective action, and it represents our next goal. In conclu-

sion, we believe that the coherent state formulation of non-commutativity can offer

new and intriguing perspectives on the phenomenology of quantum gravity. In this

paper we presented just a glimpse of the potential of this theory, which certainly

deserves further investigations.
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