2,490 research outputs found
Determination of the Jet Energy Scale at the Collider Detector at Fermilab
A precise determination of the energy scale of jets at the Collider Detector
at Fermilab at the Tevatron collider is described. Jets are used in
many analyses to estimate the energies of partons resulting from the underlying
physics process. Several correction factors are developed to estimate the
original parton energy from the observed jet energy in the calorimeter. The jet
energy response is compared between data and Monte Carlo simulation for various
physics processes, and systematic uncertainties on the jet energy scale are
determined. For jets with transverse momenta above 50 GeV the jet energy scale
is determined with a 3% systematic uncertainty
Precision measurements of the top quark mass from the Tevatron in the pre-LHC era
The top quark is the heaviest of the six quarks of the Standard Model.
Precise knowledge of its mass is important for imposing constraints on a number
of physics processes, including interactions of the as yet unobserved Higgs
boson. The Higgs boson is the only missing particle of the Standard Model,
central to the electroweak symmetry breaking mechanism and generation of
particle masses. In this Review, experimental measurements of the top quark
mass accomplished at the Tevatron, a proton-antiproton collider located at the
Fermi National Accelerator Laboratory, are described. Topologies of top quark
events and methods used to separate signal events from background sources are
discussed. Data analysis techniques used to extract information about the top
mass value are reviewed. The combination of several most precise measurements
performed with the two Tevatron particle detectors, CDF and \D0, yields a value
of \Mt = 173.2 \pm 0.9 GeV/.Comment: This version contains the most up-to-date top quark mass averag
Search for the Higgs boson in events with missing transverse energy and b quark jets produced in proton-antiproton collisions at s**(1/2)=1.96 TeV
We search for the standard model Higgs boson produced in association with an
electroweak vector boson in events with no identified charged leptons, large
imbalance in transverse momentum, and two jets where at least one contains a
secondary vertex consistent with the decay of b hadrons. We use ~1 fb-1
integrated luminosity of proton-antiproton collisions at s**(1/2)=1.96 TeV
recorded by the CDF II experiment at the Tevatron. We find 268 (16) single
(double) b-tagged candidate events, where 248 +/- 43 (14.4 +/- 2.7) are
expected from standard model background processes. We place 95% confidence
level upper limits on the Higgs boson production cross section for several
Higgs boson masses ranging from 110 GeV/c2 to 140 GeV/c2. For a mass of 115
GeV/c2 the observed (expected) limit is 20.4 (14.2) times the standard model
prediction.Comment: 8 pages, 2 figures, submitted to Phys. Rev. Let
A search for resonant production of pairs in $4.8\ \rm{fb}^{-1}p\bar{p}\sqrt{s}=1.96\ \rm{TeV}$
We search for resonant production of tt pairs in 4.8 fb^{-1} integrated
luminosity of ppbar collision data at sqrt{s}=1.96 TeV in the lepton+jets decay
channel, where one top quark decays leptonically and the other hadronically. A
matrix element reconstruction technique is used; for each event a probability
density function (pdf) of the ttbar candidate invariant mass is sampled. These
pdfs are used to construct a likelihood function, whereby the cross section for
resonant ttbar production is estimated, given a hypothetical resonance mass and
width. The data indicate no evidence of resonant production of ttbar pairs. A
benchmark model of leptophobic Z \rightarrow ttbar is excluded with m_{Z'} <
900 GeV at 95% confidence level.Comment: accepted for publication in Physical Review D Sep 21, 201
Observation and Mass Measurement of the Baryon
We report the observation and measurement of the mass of the bottom, strange
baryon through the decay chain , where
, , and .
Evidence for observation is based on a signal whose probability of arising from
the estimated background is 6.6 x 10^{-15}, or 7.7 Gaussian standard
deviations. The mass is measured to be (stat.) (syst.) MeV/.Comment: Minor text changes for the second version. Accepted by Phys. Rev.
Let
Evidence for the exclusive decay Bc+- to J/psi pi+- and measurement of the mass of the Bc meson
We report first evidence for a fully reconstructed decay mode of the
B_c^{\pm} meson in the channel B_c^{\pm} \to J/psi \pi^{\pm}, with J/psi \to
mu^+mu^-. The analysis is based on an integrated luminosity of 360 pb$^{-1} in
p\bar{p} collisions at 1.96 TeV center of mass energy collected by the Collider
Detector at Fermilab. We observe 14.6 \pm 4.6 signal events with a background
of 7.1 \pm 0.9 events, and a fit to the J/psi pi^{\pm} mass spectrum yields a
B_c^{\pm} mass of 6285.7 \pm 5.3(stat) \pm 1.2(syst) MeV/c^2. The probability
of a peak of this magnitude occurring by random fluctuation in the search
region is estimated as 0.012%.Comment: 7 pages, 3 figures. Version 3, accepted by PR
Measurement of the Helicity Fractions of W Bosons from Top Quark Decays Using Fully Reconstructed top-antitop Events with CDF II
We present a measurement of the fractions F_0 and F_+ of longitudinally
polarized and right-handed W bosons in top quark decays using data collected
with the CDF II detector. The data set used in the analysis corresponds to an
integrated luminosity of approximately 318 pb -1. We select ttbar candidate
events with one lepton, at least four jets, and missing transverse energy. Our
helicity measurement uses the decay angle theta*, which is defined as the angle
between the momentum of the charged lepton in the W boson rest frame and the W
momentum in the top quark rest frame. The cos(theta*) distribution in the data
is determined by full kinematic reconstruction of the ttbar candidates. We find
F_0 = 0.85 +0.15 -0.22 (stat) +- 0.06 (syst) and F_+ = 0.05 +0.11 -0.05 (stat)
+- 0.03 (syst), which is consistent with the standard model prediction. We set
an upper limit on the fraction of right-handed W bosons of F_+ < 0.26 at the
95% confidence level.Comment: 11 pages, 2 figures, submitted to Phys. Rev.
Polarizations of J/psi and psi(2S) Mesons Produced in ppbar Collisions at 1.96 TeV
We have measured the polarizations of \jpsi and \psiprime mesons as
functions of their transverse momentum \pt when they are produced promptly in
the rapidity range with \pt \geq 5 \pgev. The analysis is performed
using a data sample with an integrated luminosity of about 800 \ipb collected
by the CDF II detector. For both vector mesons, we find that the polarizations
become increasingly longitudinal as \pt increases from 5 to 30 \pgev. These
results are compared to the predictions of nonrelativistic quantum
chromodynamics and other contemporary models. The effective polarizations of
\jpsi and \psiprime mesons from -hadron decays are also reported.Comment: 8 pages, 7 figures, published in Physical Review Letter
Searches for Direct Pair Production of Supersymmetric Top and Supersymmetric Bottom Quarks in p-pbar Collisions at sqrt(s)=1.96 TeV
We search for direct pair production of supersymmetric top quarks and
supersymmetric bottom quarks in proton-antiproton collisions at sqrt(s)=1.96
TeV, using 295 pb^-1 of data recorded by the Collider Detector at Fermilab (CDF
II) experiment. The supersymmetric top (supersymmetric bottom) quarks are
selected by reconstructing their decay into a charm (bottom) quark and a
neutralino, which is assumed to be the lightest supersymmetric particle. The
signature of such processes is two energetic heavy-flavor jets and missing
transverse energy. The number of events that pass our selection for each search
process is consistent with the expected standard model background. By comparing
our results to the theoretical production cross sections of the supersymmetric
top and supersymmetric bottom quarks in the minimal supersymmetric standard
model, we exclude, at a 95% confidence level in the frame of that model, a
supersymmetric top quark mass up to 132 GeV/c^2 for a neutralino mass of 48
GeV/c^2, and a supersymmetric bottom quark mass up to 193 GeV/c^2 for a
neutralino mass of 40 GeV/c^2.Comment: 12 pages, 5 figures, submitted to Phys. Rev.
Evidence for t\bar{t}\gamma Production and Measurement of \sigma_t\bar{t}\gamma / \sigma_t\bar{t}
Using data corresponding to 6.0/fb of ppbar collisions at sqrt(s) = 1.96 TeV
collected by the CDF II detector, we present a cross section measurement of
top-quark pair production with an additional radiated photon. The events are
selected by looking for a lepton, a photon, significant transverse momentum
imbalance, large total transverse energy, and three or more jets, with at least
one identified as containing a b quark. The ttbar+photon sample requires the
photon to have 10 GeV or more of transverse energy, and to be in the central
region. Using an event selection optimized for the ttbar+photon candidate
sample we measure the production cross section of, and the ratio of cross
sections of the two samples. Control samples in the dilepton+photon and
lepton+photon+\met, channels are constructed to aid in decay product
identification and background measurements. We observe 30 ttbar+photon
candidate events compared to the standard model expectation of 26.9 +/- 3.4
events. We measure the ttbar+photon cross section to be 0.18+0.08 pb, and the
ratio of the cross section of ttbar+photon to ttbar to be 0.024 +/- 0.009.
Assuming no ttbar+photon production, we observe a probability of 0.0015 of the
background events alone producing 30 events or more, corresponding to 3.0
standard deviations.Comment: 9 pages, 3 figure
- …