224 research outputs found
Spin Relaxation Times of Single-Wall Carbon Nanotubes
We have measured temperature ()- and power-dependent electron spin
resonance in bulk single-wall carbon nanotubes to determine both the
spin-lattice and spin-spin relaxation times, and . We observe that
increases linearly with from 4 to 100 K, whereas {\em
decreases} by over a factor of two when is increased from 3 to 300 K. We
interpret the trend as spin-lattice relaxation via
interaction with conduction electrons (Korringa law) and the decreasing
dependence of as motional narrowing. By analyzing the latter, we
find the spin hopping frequency to be 285 GHz. Last, we show that the Dysonian
lineshape asymmetry follows a three-dimensional variable-range hopping behavior
from 3 to 20 K; from this scaling relation, we extract a localization length of
the hopping spins to be 100 nm.Comment: 6 pages, 3 figure
Carbon Nanotube-Enhanced Carbon-Phenenolic Ablator Material
This viewgraph presentation reviews the use of PICA (phenolic impregnated carbon ablator) as the selected material for heat shielding for future earth return vehicles. It briefly reviews the manufacturing of PICA and the advantages for the use of heat shielding, and then explains the reason for using Carbon Nanotubes to improve strength of phenolic resin that binds carbon fibers together. It reviews the work being done to create a carbon nanotube enhanced PICA. Also shown are various micrographic images of the various PICA materials
The Unique Origin of Colors of Armchair Carbon Nanotubes
The colors of suspended metallic colloidal particles are determined by their
size-dependent plasma resonance, while those of semiconducting colloidal
particles are determined by their size-dependent band gap. Here, we present a
novel case for armchair carbon nanotubes, suspended in aqueous medium, for
which the color depends on their size-dependent excitonic resonance, even
though the individual particles are metallic. We observe distinct colors of a
series of armchair-enriched nanotube suspensions, highlighting the unique
coloration mechanism of these one-dimensional metals.Comment: 4 pages, 3 figure
A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis
The cause of sporadic amyotrophic lateral sclerosis (ALS) is largely unknown, but genetic factors are thought to play a significant role in determining susceptibility to motor neuron degeneration. To identify genetic variants altering risk of ALS, we undertook a two-stage genome-wide association study (GWAS): we followed our initial GWAS of 545 066 SNPs in 553 individuals with ALS and 2338 controls by testing the 7600 most associated SNPs from the first stage in three independent cohorts consisting of 2160 cases and 3008 controls. None of the SNPs selected for replication exceeded the Bonferroni threshold for significance. The two most significantly associated SNPs, rs2708909 and rs2708851 [odds ratio (OR) = 1.17 and 1.18, and P-values = 6.98 x 10–7 and 1.16 x 10–6], were located on chromosome 7p13.3 within a 175 kb linkage disequilibrium block containing the SUNC1, HUS1 and C7orf57 genes. These associations did not achieve genome-wide significance in the original cohort and failed to replicate in an additional independent cohort of 989 US cases and 327 controls (OR = 1.18 and 1.19, P-values = 0.08 and 0.06, respectively). Thus, we chose to cautiously interpret our data as hypothesis-generating requiring additional confirmation, especially as all previously reported loci for ALS have failed to replicate successfully. Indeed, the three loci (FGGY, ITPR2 and DPP6) identified in previous GWAS of sporadic ALS were not significantly associated with disease in our study. Our findings suggest that ALS is more genetically and clinically heterogeneous than previously recognized. Genotype data from our study have been made available online to facilitate such future endeavors
A genome-wide association study identifies protein quantitative trait loci (pQTLs)
There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts - cis effects, and elsewhere in the genome - trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8×10 -57), CCL4L1 (p = 3.9×10-21), IL18 (p = 6.8×10-13), LPA (p = 4.4×10-10), GGT1 (p = 1.5×10-7), SHBG (p = 3.1×10-7), CRP (p = 6.4×10-6) and IL1RN (p = 7.3×10-6) genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R), altered secretion rates of different sized proteins (LPA), variation in gene copy number (CCL4L1) and altered transcription (GGT1). We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha) levels (p = 6.8×10-40), but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis locations. The identification of protein quantitative trait loci (pQTLs) may be a powerful complementary method of improving our understanding of disease pathways. © 2008 Melzer et al
Magnetometric Studies of Catalyst Refuses in Nanocarbon Materials
It is shown that magnetometry can be employed as an effective tool to control the content of a ferromagnetic constituent in nanocarbon materials. We propose a thermochemical treatment protocol to achieve extensive cleaning of the source nanocarbon materials from ferromagnetic refuses
MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies
The MAPT (microtubule-associated protein tau) locus is one of the most remarkable in neurogenetics due not only to its involvement in multiple neurodegenerative disorders, including progressive supranuclear palsy, corticobasal degeneration, Parksinson's disease and possibly Alzheimer's disease, but also due its genetic evolution and complex alternative splicing features which are, to some extent, linked and so all the more intriguing. Therefore, obtaining robust information regarding the expression, splicing and genetic regulation of this gene within the human brain is of immense importance. In this study, we used 2011 brain samples originating from 439 individuals to provide the most reliable and coherent information on the regional expression, splicing and regulation of MAPT available to date. We found significant regional variation in mRNA expression and splicing of MAPT within the human brain. Furthermore, at the gene level, the regional distribution of mRNA expression and total tau protein expression levels were largely in agreement, appearing to be highly correlated. Finally and most importantly, we show that while the reported H1/H2 association with gene level expression is likely to be due to a technical artefact, this polymorphism is associated with the expression of exon 3-containing isoforms in human brain. These findings would suggest that contrary to the prevailing view, genetic risk factors for neurodegenerative diseases at the MAPT locus are likely to operate by changing mRNA splicing in different brain regions, as opposed to the overall expression of the MAPT gene
Integration of GWAS SNPs and tissue specific expression profiling reveal discrete eQTLs for human traits in blood and brain
Our knowledge of the transcriptome has become much more complex since the days of
the central dogma of molecular biology. We now know that splicing takes place to
create potentially thousands of isoforms from a single gene, and we know that RNA
does not always faithfully recapitulate DNA if RNA editing occurs. Collectively, these
observations show that the transcriptome is amazingly rich with intricate regulatory
mechanisms for overall gene expression, splicing, and RNA editing.
Genetic variability can play a role in controlling gene expression, which can be
identified by examining expression quantitative trait loci (eQTLs). eQTLs are genomic
regions where genetic variants, including single nucleotide polymorphisms (SNPs)
show a statistical association with expression of mRNA transcripts. In humans, many
SNPs are also associated with disease, and have been identified using genome wide
association studies (GWAS) but the biological effects of those SNPs are usually not
known. If SNPs found in GWAS are also found in eQTLs, then one could hypothesize
that expression levels may contribute to disease risk. Performing eQTL analysis with
GWAS SNPs in both blood and brain, specifically the frontal cortex and the
cerebellum, we found both shared and tissue unique eQTLS. The identification of
tissue-unique eQTLs supports the argument that choice of tissue type is important in
eQTL studies (Paper I).
Aging is a complex process with the mechanisms underlying aging still being poorly
defined. There is evidence that the transcriptome changes with age, and hence we used
the brain dataset from our first paper as a discovery set, with an additional replication
dataset, to investigate any aging-gene expression associations. We found evidence that
many genes were associated with aging. We further found that there were more
statically significant expression changes in the frontal cortex versus the cerebellum,
indicating that brain regions may age at different rates. As the brain is a heterogeneous
tissue including both neurons and non-neuronal cells, we used LCM to capture Purkinje
cells as a representative neuronal type and repeated the age analysis. Looking at the
discovery, replication and Purkinje cell datasets we found five genes with strong,
replicated evidence of age-expression associations (Paper II).
Being able to capture and quantify the depth of the transcriptome has been a lengthy
process starting with methods that could only measure a single gene to genome-wide
techniques such as microarray. A recently developed technology, RNA-Seq, shows
promise in its ability to capture expression, splicing, and editing and with its broad
dynamic range quantification is accurate and reliable. RNA-Seq is, however, data
intensive and a great deal of computational expertise is required to fully utilize the
strengths of this method. We aimed to create a small, well-controlled, experiment in
order to test the performance of this relatively new technology in the brain. We chose
embryonic versus adult cerebral cortex, as mice are genetically homogenous and there
are many known differences in gene expression related to brain development that we
could use as benchmarks for analysis testing. We found a large number of differences
in total gene expression between embryonic and adult brain. Rigorous technical and
biological validation illustrated the accuracy and dynamic range of RNA-Seq. We were also able to interrogate differences in exon usage in the same dataset. Finally we
were able to identify and quantify both well-known and novel A-to-I edit sites. Overall
this project helped us develop the tools needed to build usable pipelines for RNA-Seq
data processing (Paper III).
Our studies in the developing brain (Paper III) illustrated that RNA-Seq was a useful
unbiased method for investigating RNA editing. To extend this further, we utilized a
genetically modified mouse model to study the transcriptomic role of the RNA editing
enzyme ADAR2. We found that ADAR2 was important for editing of the coding
region of mRNA as a large proportion of RNA editing sites in coding regions had a
statistically significant decrease in editing percentages in Adar2
-/-Gria2
R/R
mice versus
controls. However, despite indications in the literature that ADAR2 may also be
involved in splicing and expression regulatory machinery we found no changes in gene
expression or exon utilization in Adar2
-/-Gria2
R/R
mice as compared to their littermate
controls (Paper IV).
In our final study, based on the methods developed in Papers III and IV, we revisited
the idea of age related gene expression associations from Paper II. We used a subset of
human frontal cortices for RNA sequencing. Interestingly we found more gene
expression changes with aging compared to the previous data using microarrays in
Paper II. When the significant gene lists were analysed for gene ontology enrichment,
we found that there was a large number of downregulated genes involved in synaptic
function while those that were upregulated had enrichment in immune function. This
dataset illustrates that the aging brain may be predisposed to the processes found in
neurodegenerative diseases (Paper V)
Enhancement of the Electron Spin Resonance of Single-Walled Carbon Nanotubes by Oxygen Removal
We have observed a nearly fourfold increase in the electron spin resonance
(ESR) signal from an ensemble of single-walled carbon nanotubes (SWCNTs) due to
oxygen desorption. By performing temperature-dependent ESR spectroscopy both
before and after thermal annealing, we found that the ESR in SWCNTs can be
reversibly altered via the molecular oxygen content in the samples. Independent
of the presence of adsorbed oxygen, a Curie-law (spin susceptibility ) is seen from 4 K to 300 K, indicating that the probed spins are
finite-level species. For both the pre-annealed and post-annealed sample
conditions, the ESR linewidth decreased as the temperature was increased, a
phenomenon we identify as motional narrowing. From the temperature dependence
of the linewidth, we extracted an estimate of the intertube hopping frequency;
for both sample conditions, we found this hopping frequency to be 100
GHz. Since the spin hopping frequency changes only slightly when oxygen is
desorbed, we conclude that only the spin susceptibility, not spin transport, is
affected by the presence of physisorbed molecular oxygen in SWCNT ensembles.
Surprisingly, no linewidth change is observed when the amount of oxygen in the
SWCNT sample is altered, contrary to other carbonaceous systems and certain 1D
conducting polymers. We hypothesize that physisorbed molecular oxygen acts as
an acceptor (-type), compensating the donor-like (-type) defects that are
responsible for the ESR signal in bulk SWCNTs.Comment: 14 pages, 7 figure
Abundant Quantitative Trait Loci Exist for DNA Methylation and Gene Expression in Human Brain
A fundamental challenge in the post-genome era is to understand and annotate the consequences of genetic variation, particularly within the context of human tissues. We present a set of integrated experiments that investigate the effects of common genetic variability on DNA methylation and mRNA expression in four human brain regions each from 150 individuals (600 samples total). We find an abundance of genetic cis regulation of mRNA expression and show for the first time abundant quantitative trait loci for DNA CpG methylation across the genome. We show peak enrichment for cis expression QTLs to be approximately 68,000 bp away from individual transcription start sites; however, the peak enrichment for cis CpG methylation QTLs is located much closer, only 45 bp from the CpG site in question. We observe that the largest magnitude quantitative trait loci occur across distinct brain tissues. Our analyses reveal that CpG methylation quantitative trait loci are more likely to occur for CpG sites outside of islands. Lastly, we show that while we can observe individual QTLs that appear to affect both the level of a transcript and a physically close CpG methylation site, these are quite rare. We believe these data, which we have made publicly available, will provide a critical step toward understanding the biological effects of genetic variation
- …