11 research outputs found

    Bose-Einstein correlations of same-sign charged pions in the forward region in pp collisions at √s=7 TeV

    Get PDF
    Bose-Einstein correlations of same-sign charged pions, produced in protonproton collisions at a 7 TeV centre-of-mass energy, are studied using a data sample collected by the LHCb experiment. The signature for Bose-Einstein correlations is observed in the form of an enhancement of pairs of like-sign charged pions with small four-momentum difference squared. The charged-particle multiplicity dependence of the Bose-Einstein correlation parameters describing the correlation strength and the size of the emitting source is investigated, determining both the correlation radius and the chaoticity parameter. The measured correlation radius is found to increase as a function of increasing charged-particle multiplicity, while the chaoticity parameter is seen to decreas

    Infected pancreatic necrosis: outcomes and clinical predictors of mortality. A post hoc analysis of the MANCTRA-1 international study

    Get PDF
    : The identification of high-risk patients in the early stages of infected pancreatic necrosis (IPN) is critical, because it could help the clinicians to adopt more effective management strategies. We conducted a post hoc analysis of the MANCTRA-1 international study to assess the association between clinical risk factors and mortality among adult patients with IPN. Univariable and multivariable logistic regression models were used to identify prognostic factors of mortality. We identified 247 consecutive patients with IPN hospitalised between January 2019 and December 2020. History of uncontrolled arterial hypertension (p = 0.032; 95% CI 1.135-15.882; aOR 4.245), qSOFA (p = 0.005; 95% CI 1.359-5.879; aOR 2.828), renal failure (p = 0.022; 95% CI 1.138-5.442; aOR 2.489), and haemodynamic failure (p = 0.018; 95% CI 1.184-5.978; aOR 2.661), were identified as independent predictors of mortality in IPN patients. Cholangitis (p = 0.003; 95% CI 1.598-9.930; aOR 3.983), abdominal compartment syndrome (p = 0.032; 95% CI 1.090-6.967; aOR 2.735), and gastrointestinal/intra-abdominal bleeding (p = 0.009; 95% CI 1.286-5.712; aOR 2.710) were independently associated with the risk of mortality. Upfront open surgical necrosectomy was strongly associated with the risk of mortality (p < 0.001; 95% CI 1.912-7.442; aOR 3.772), whereas endoscopic drainage of pancreatic necrosis (p = 0.018; 95% CI 0.138-0.834; aOR 0.339) and enteral nutrition (p = 0.003; 95% CI 0.143-0.716; aOR 0.320) were found as protective factors. Organ failure, acute cholangitis, and upfront open surgical necrosectomy were the most significant predictors of mortality. Our study confirmed that, even in a subgroup of particularly ill patients such as those with IPN, upfront open surgery should be avoided as much as possible. Study protocol registered in ClinicalTrials.Gov (I.D. Number NCT04747990)

    Observation of the decay Λb0 → pK−μ+μ− and a search for CP violation

    Get PDF
    A search for CP violation in the decay Λb 0 → pK−μ+μ− is presented. This decay is mediated by flavour-changing neutral-current transitions in the Standard Model and is potentially sensitive to new sources of CP violation. The study is based on a data sample of proton-proton collisions recorded with the LHCb experiment, corresponding to an integrated luminosity of 3 fb−1. The Λb 0 → pK−μ+μ− decay is observed for the first time, and two observables that are sensitive to different manifestations of CP violation are measured, (Formula Presented.)where the latter is based on asymmetries in the angle between the μ+μ− and pK− decay planes. These are measured to be(Formula Presented.)and no evidence for CP violation is found.[Figure not available: see fulltext.].</p

    Gold(I) and Related Heterometallic Derivatives of Dimolybdenum Complexes with Asymmetric Phosphinidene Bridges

    No full text
    The phosphinidene-bridged complexes [Mo<sub>2</sub>Cp<sub>2</sub>(μ-κ<sup>1</sup>:κ<sup>1</sup>,η<sup>6</sup>-PR*)­(CO)<sub>2</sub>] (<b>1</b>), [Mo<sub>2</sub>Cp<sub>2</sub>(μ-κ<sup>1</sup>:κ<sup>1</sup>,η<sup>4</sup>-PR*)­(CO)<sub>3</sub>] (<b>2</b>), [Mo<sub>2</sub>Cp­(μ-κ<sup>1</sup>:κ<sup>1</sup>,η<sup>5</sup>-PC<sub>5</sub>H<sub>4</sub>)­(η<sup>6</sup>-HR*)­(CO)<sub>2</sub>] (<b>3</b>), and [Mo<sub>2</sub>Cp<sub>2</sub>(μ-κ<sup>1</sup>:κ<sup>1</sup>-PH)­(η<sup>6</sup>-HR*)­(CO)<sub>2</sub>] (<b>4</b>) were examined as precursors of heterometallic gold­(I) and related derivatives (Cp = η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>, R* = 2,4,6-C<sub>6</sub>H<sub>2</sub><sup><i>t</i></sup>Bu<sub>3</sub>). These complexes reacted with [AuCl­(THT)] to give the corresponding derivatives [AuMo<sub>2</sub>ClCp<sub>2</sub>(μ-κ<sup>1</sup>:κ<sup>1</sup>:κ<sup>1</sup>,η<sup>6</sup>-PR*)­(CO)<sub>2</sub>], [AuMo<sub>2</sub>ClCp<sub>2</sub>(μ-κ<sup>1</sup>:κ<sup>1</sup>:κ<sup>1</sup>,η<sup>4</sup>-PR*)­(CO)<sub>3</sub>] (Au–Mo <b>=</b> 2.8493(6) Å), [AuMo<sub>2</sub>ClCp­(μ-κ<sup>1</sup>:κ<sup>1</sup>:κ<sup>1</sup>,η<sup>5</sup>-PC<sub>5</sub>H<sub>4</sub>)­(CO)<sub>2</sub>(η<sup>6</sup>-HR*)], and [AuMo<sub>2</sub>ClCp<sub>2</sub>(μ<sub>3</sub>-PH)­(CO)<sub>2</sub>(η<sup>6</sup>-HR*)] formally resulting from the addition of an acceptor AuCl moiety to the short Mo–P bond of the parent substrates almost perpendicular to the corresponding Mo<sub>2</sub>P plane. The chloride ligand was easily displaced upon reaction of the PC<sub>5</sub>H<sub>4</sub>-bridged gold complex with K­[MoCp­(CO)<sub>3</sub>] to give the tetranuclear derivative [AuMo<sub>3</sub>Cp<sub>2</sub>(μ-κ<sup>1</sup>:κ<sup>1</sup>:κ<sup>1</sup>,η<sup>5</sup>-PC<sub>5</sub>H<sub>4</sub>)­(CO)<sub>5</sub>(η<sup>6</sup>-HR*)] (Au–Mo = 2.711(2) and 2.807(2) Å). Compound <b>1</b> also reacted with HgI<sub>2</sub> to give a hexanuclear complex [HgMo<sub>2</sub>Cp<sub>2</sub>(μ-I)­I­(μ-κ<sup>1</sup>:κ<sup>1</sup>,η<sup>6</sup>-PR*)­(CO)<sub>2</sub>]<sub>2</sub> containing dative Mo→Hg bonds (2.820(1) and 2.827(1) Å), whereas complex <b>3</b> gave the μ<sub>3</sub>-PR bridged complex [HgMo<sub>2</sub>CpI<sub>2</sub>(μ-κ<sup>1</sup>:κ<sup>1</sup>:κ<sup>1</sup>,η<sup>5</sup>-PC<sub>5</sub>H<sub>4</sub>)­(CO)<sub>2</sub>(η<sup>6</sup>-HR*)]. Complexes <b>1</b> to <b>4</b> also reacted easily with [AuL­(THT)]­PF<sub>6</sub> (L = THT, P­(<i>p</i>-tol)<sub>3</sub>, PMe<sub>3</sub>, P<sup><i>i</i></sup>Pr<sub>3</sub>) to give the corresponding cationic trinuclear derivatives [AuMo<sub>2</sub>Cp<sub>2</sub>(μ-κ<sup>1</sup>:κ<sup>1</sup>:κ<sup>1</sup>,η<sup>6</sup>-PR*)­(CO)<sub>2</sub>L]­(PF<sub>6</sub>) (Au–Mo = 2.8080(3) Å for L = P­(<i>p</i>-tol)<sub>3</sub>), [AuMo<sub>2</sub>Cp<sub>2</sub>(μ-κ<sup>1</sup>:κ<sup>1</sup>:κ<sup>1</sup>,η<sup>4</sup>-PR*)­(CO)<sub>3</sub>L]­(PF<sub>6</sub>), and [AuMo<sub>2</sub>Cp­(μ-κ<sup>1</sup>:κ<sup>1</sup>:κ<sup>1</sup>,η<sup>5</sup>-PC<sub>5</sub>H<sub>4</sub>)­(CO)<sub>2</sub>(η<sup>6</sup>-HR*)­{P­(<i>p</i>-tol)<sub>3</sub>}]­(PF<sub>6</sub>). The blue, analogous PH-bridged complexes were more conveniently isolated as tetra-arylborate salts [AuMo<sub>2</sub>Cp<sub>2</sub>(μ<sub>3</sub>-PH)­(CO)<sub>2</sub>(η<sup>6</sup>-HR*)­L]­(BAr′<sub>4</sub>) (Au–Mo = 2.8038(6) Å for L = P<sup><i>i</i></sup>Pr<sub>3</sub>; Ar′= 3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>]. Compounds <b>1</b>, <b>3</b>, and <b>4</b> reacted readily with the cation [Au­(THT)<sub>2</sub>]<sup>+</sup> (as PF<sub>6</sub><sup>–</sup> or BAr′<sub>4</sub><sup>–</sup> salts) in a 2:1 ratio to give respectively the corresponding pentanuclear derivatives [Au­{Mo<sub>2</sub>Cp<sub>2</sub>(μ-κ<sup>1</sup>:κ<sup>1</sup>:κ<sup>1</sup>,η<sup>6</sup>-PR*)­(CO)<sub>2</sub>}<sub>2</sub>]­(PF<sub>6</sub>), [Au­{Mo<sub>2</sub>Cp­(μ-κ<sup>1</sup>:κ<sup>1</sup>:κ<sup>1</sup>,η<sup>5</sup>-PC<sub>5</sub>H<sub>4</sub>)­(CO)<sub>2</sub>(η<sup>6</sup>-HR*)}<sub>2</sub>]­(PF<sub>6</sub>) (Au–Mo = 2.7975(7) and 2.8006(7) Å), and [Au­{Mo<sub>2</sub>Cp<sub>2</sub>(μ<sub>3</sub>-PH)­(CO)<sub>2</sub>(η<sup>6</sup>-HR*)}<sub>2</sub>]­(BAr′<sub>4</sub>) (Au–Mo = 2.8233(8) and 2.8691(7) Å). Related silver complexes were obtained from the reaction of <b>3</b> and <b>4</b> with [AgCl­(PPh<sub>3</sub>)]<sub>4</sub> after spontaneous symmetrization, while reaction of <b>1</b> with [Cu­(NCMe)<sub>4</sub>]­PF<sub>6</sub> in a 2:1 ratio yielded the analogous copper complex [Cu­{Mo<sub>2</sub>Cp<sub>2</sub>(μ-κ<sup>1</sup>:κ<sup>1</sup>:κ<sup>1</sup>,η<sup>6</sup>-PR*)­(CO)<sub>2</sub>}<sub>2</sub>]­(PF<sub>6</sub>). All the above cationic gold complexes having (μ-κ<sup>1</sup>:κ<sup>1</sup>:κ<sup>1</sup>,η<sup>6</sup>-PR*) ligands (but not the copper complex) rearranged into [Au­{Mo<sub>2</sub>Cp­(μ-κ<sup>1</sup>:κ<sup>1</sup>:κ<sup>1</sup>,η<sup>5</sup>-PC<sub>5</sub>H<sub>4</sub>)­(CO)<sub>2</sub>(η<sup>6</sup>-HR*)}<sub>2</sub>]­(PF<sub>6</sub>) in refluxing 1,2-dichloroethane solution

    Dimolybdenum Cyclopentadienyl Complexes with Bridging Chalcogenophosphinidene Ligands

    No full text
    The reactions of the phosphinidene-bridged complex [Mo<sub>2</sub>Cp<sub>2</sub>(μ-PH)­(η<sup>6</sup>-HMes*)­(CO)<sub>2</sub>] (<b>1</b>), the arylphosphinidene complexes [Mo<sub>2</sub>Cp<sub>2</sub>(μ-κ<sup>1</sup>:κ<sup>1</sup>,η<sup>6</sup>-PMes*)­(CO)<sub>2</sub>] (<b>2</b>), [Mo<sub>2</sub>Cp<sub>2</sub>(μ-κ<sup>1</sup>:κ<sup>1</sup>,η<sup>4</sup>-PMes*)­(CO)<sub>3</sub>] (<b>3</b>), [Mo<sub>2</sub>Cp<sub>2</sub>(μ-κ<sup>1</sup>:κ<sup>1</sup>,η<sup>4</sup>-PMes*)­(CO)<sub>2</sub>(CN<sup><i>t</i></sup>Bu)] (<b>4</b>), and the cyclopentadienylidene-phosphinidene complex [Mo<sub>2</sub>Cp­(μ-κ<sup>1</sup>:κ<sup>1</sup>,η<sup>5</sup>-PC<sub>5</sub>H<sub>4</sub>)­(η<sup>6</sup>-HMes*)­(CO)<sub>2</sub>] (<b>5</b>) toward different sources of chalcogen atoms were investigated (Mes* = 2,4,6-C<sub>6</sub>H<sub>2</sub><sup><i>t</i></sup>Bu<sub>3</sub>; Cp = η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>). The bare elements were appropriate sources in all cases except for oxygen, in which case dimethyldioxirane gave the best results. Complex <b>1</b> reacted with the mentioned chalcogen sources at low temperature, to give the corresponding chalcogenophosphinidene derivatives [Mo<sub>2</sub>Cp<sub>2</sub>{μ-κ<sup>2</sup><sub>P,Z</sub>:κ<sup>1</sup><sub>P</sub>-ZPH}­(η<sup>6</sup>-HMes*)­(CO)<sub>2</sub>] (Z = O, S, Se, Te; P–Se = 2.199(2) Å). The arylphosphinidene complex <b>2</b> was the least reactive substrate and gave only chalcogenophosphinidene derivatives [Mo<sub>2</sub>Cp<sub>2</sub>(μ-κ<sup>2</sup><sub>P,Z</sub>:κ<sup>1</sup><sub>P</sub>,η<sup>6</sup>-ZPMes*)­(CO)<sub>2</sub>] for Z = O and S (P–O = 1.565(2) Å), along with small amounts of the dithiophosphorane complex [Mo<sub>2</sub>Cp<sub>2</sub>(μ-κ<sup>2</sup><sub>P,S</sub>:κ<sup>1</sup><sub>S′</sub>,η<sup>6</sup>-S<sub>2</sub>PMes*)­(CO)<sub>2</sub>], in the reaction with sulfur. The η<sup>4</sup>-complexes <b>3</b> and <b>4</b> reacted with sulfur and gray selenium to give the corresponding derivatives [Mo<sub>2</sub>Cp<sub>2</sub>(μ-κ<sup>2</sup><sub>P,Z</sub>:κ<sup>1</sup><sub>P</sub>,η<sup>4</sup>-ZPMes*)­(CO)<sub>2</sub>L] (L = CO, CN<sup><i>t</i></sup>Bu), obtained respectively as syn (Z = Se; P–Se = 2.190(1) Å for L = CO) or a mixture of syn and anti isomers (Z = S; P–S = 2.034(1)–2.043(1) Å), with these diastereoisomers differing in the relative positioning of the chalcogen atom and the terminal ligand at the metallocene fragment, relative to the Mo<sub>2</sub>P plane. The cyclopentadienylidene compound <b>5</b> reacted with all chalcogens, and gave with good yields the chalcogenophosphinidene derivatives [Mo<sub>2</sub>Cp­(μ-κ<sup>2</sup><sub>P,Z</sub>:κ<sup>1</sup><sub>P</sub>,η<sup>5</sup>-ZPC<sub>5</sub>H<sub>4</sub>)­(η<sup>6</sup>-HMes*)­(CO)<sub>2</sub>] (Z = S, Se, Te), these displaying in solution equilibrium mixtures of the corresponding cis and trans isomers differing in the relative positioning of the cyclopentadienylic rings with respect to the MoPZ plane in each case. The sulfur derivative reacted with excess sulfur to give the dithiophosphorane complex [Mo<sub>2</sub>Cp­(μ-κ<sup>2</sup><sub>P,S</sub>:κ<sup>1</sup><sub>S′</sub>,η<sup>5</sup>-S<sub>2</sub>PC<sub>5</sub>H<sub>4</sub>)­(η<sup>6</sup>-HMes*)­(CO)<sub>2</sub>] (P–S = 2.023(4) and 2.027(4) Å). The structural and spectroscopic data for all chalcogenophosphinidene complexes suggested the presence of a significant π­(P–Z) bonding interaction within the corresponding MoPZ rings, also supported by Density Functional Theory calculations on the thiophosphinidene complex <i>syn</i>-[Mo<sub>2</sub>Cp<sub>2</sub>(μ-κ<sup>2</sup><sub>P,S</sub>:κ<sup>1</sup><sub>P</sub>,η<sup>4</sup>-SPMes*)­(CO)<sub>3</sub>]

    Reactivity of the Phosphinidene-Bridged Complexes [Mo<sub>2</sub>Cp(μ-κ<sup>1</sup>:κ<sup>1</sup>,η<sup>5</sup>-PC<sub>5</sub>H<sub>4</sub>)(η<sup>6</sup>-1,3,5-C<sub>6</sub>H<sub>3</sub><sup><i>t</i></sup>Bu<sub>3</sub>)(CO)<sub>2</sub>] and [Mo<sub>2</sub>Cp<sub>2</sub>(μ-PH)(η<sup>6</sup>-1,3,5-C<sub>6</sub>H<sub>3</sub><sup><i>t</i></sup>Bu<sub>3</sub>)(CO)<sub>2</sub>] toward Alkynes: Multicomponent Reactions in the Presence of Ligands

    No full text
    The cyclopentadienylidene-phosphinidene complex [Mo<sub>2</sub>Cp­(μ-κ<sup>1</sup>:κ<sup>1</sup>,η<sup>5</sup>-PC<sub>5</sub>H<sub>4</sub>)­(η<sup>6</sup>-HMes*)­(CO)<sub>2</sub>] (<b>1</b>) (Cp = η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>; Mes* = 2,4,6-C<sub>6</sub>H<sub>2</sub><sup><i>t</i></sup>Bu<sub>3</sub>) reacted with RCCR′ in refluxing toluene solutions to give the corresponding phosphide derivatives [Mo<sub>2</sub>Cp­{μ-κ<sup>1</sup>,η<sup>5</sup>:κ<sup>1</sup>,η<sup>1</sup>-(C<sub>5</sub>H<sub>4</sub>)­PCRCR′}­(η<sup>6</sup>-HMes*)­(CO)<sub>2</sub>] (R = R′ = CO<sub>2</sub>Me; R = H, R′ = CO<sub>2</sub>Me, <i>p</i>-tol), displaying a phosphametallacyclobutene ring. In contrast, the phosphinidene complex [Mo<sub>2</sub>Cp<sub>2</sub>(μ-PH)­(η<sup>6</sup>-HMes*)­(CO)<sub>2</sub>] (<b>2</b>) reacted with MeO<sub>2</sub>CCCCO<sub>2</sub>Me at room temperature to give first the monocarbonyl phosphide-acyl complex [Mo<sub>2</sub>Cp<sub>2</sub>{μ-κ<sup>1</sup>:κ<sup>1</sup>,η<sup>3</sup>-PHC­(CO<sub>2</sub>Me)C­(CO<sub>2</sub>Me)­C­(O)}­(η<sup>6</sup>-HMes*)­(CO)], the latter evolving progressively to the isomeric dicarbonyl [Mo<sub>2</sub>Cp<sub>2</sub>(μ-κ<sup>1</sup>:κ<sup>1</sup>,η<sup>1</sup>-PHC­(CO<sub>2</sub>Me)C­(CO<sub>2</sub>Me)}­(η<sup>6</sup>-HMes*)­(CO)<sub>2</sub>] (Mo–P ca. 2.57 Å). When different ligands such as CO, PMe<sub>3</sub>, P­(OMe)<sub>3</sub>, or CNXyl were added at room temperature to toluene solutions containing compound <b>1</b> and different alkynes, relatively fast multicomponent reactions took place to give with good yields the corresponding phosphide-acyl complexes [Mo<sub>2</sub>Cp­{μ-κ<sup>1</sup>,η<sup>5</sup>:κ<sup>1</sup>,η<sup>1</sup>-(C<sub>5</sub>H<sub>4</sub>)­PCRCR′C­(O)}­(η<sup>6</sup>-HMes*)­(CO)<sub>2</sub>] (R = R′ = CO<sub>2</sub>Me; R = H, R′ = CO<sub>2</sub>Me, <i>p</i>-tol), and [Mo<sub>2</sub>Cp­{μ-κ<sup>1</sup>,η<sup>5</sup>:κ<sup>1</sup>,η<sup>1</sup>-(C<sub>5</sub>H<sub>4</sub>)­PC­(CO<sub>2</sub>Me)C­(CO<sub>2</sub>Me)­C­(O)}­(η<sup>6</sup>-HMes*)­(CO)­(L)] (L = PMe<sub>3</sub>, P­(OMe)<sub>3</sub>) or the related phosphide-iminoacyl derivatives [Mo<sub>2</sub>Cp­{μ-κ<sup>1</sup>,η<sup>5</sup>:κ<sup>1</sup>,η<sup>1</sup>-(C<sub>5</sub>H<sub>4</sub>)­PCRCR′C­(NXyl)}­(η<sup>6</sup>-HMes*)­(CO)<sub>2</sub>] (Xyl = 2,6-C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>; R = R′ = CO<sub>2</sub>Me; R = H, R′ = CO<sub>2</sub>Me, C­(O)­Me), respectively, all of them displaying five-membered phosphametallacyclopentenone or phosphametallacyclopentenimine rings. Separate experiments revealed that the latter complexes (R = R′ = CO<sub>2</sub>Me) could be decarbonylated photochemically to yield the corresponding monocarbonyls [Mo<sub>2</sub>Cp­{μ-κ<sup>1</sup>,η<sup>5</sup>:κ<sup>1</sup>,η<sup>3</sup>-(C<sub>5</sub>H<sub>4</sub>)­PC­(CO<sub>2</sub>Me)C­(CO<sub>2</sub>Me)­C­(X)}­(η<sup>6</sup>-HMes*)­(CO)] (X = O, NXyl), the latter rearranging at room temperature to give the corresponding phosphametallacyclobutene isomers [Mo<sub>2</sub>Cp­{μ-κ<sup>1</sup>,η<sup>5</sup>:κ<sup>1</sup>,η<sup>1</sup>-(C<sub>5</sub>H<sub>4</sub>)­PC­(CO<sub>2</sub>Me)C­(CO<sub>2</sub>Me)}­(η<sup>6</sup>-HMes*)­(CO)­(CX)]. A side product was also formed during the photochemical treatment of the dicarbonyl substrate, it being finally isolated after chromatographic workup as the alkenylphosphide-chloride complex [Mo<sub>2</sub>CpCl­{μ-κ<sup>1</sup>,η<sup>5</sup>:κ<sup>1</sup>,η<sup>2</sup>-(C<sub>5</sub>H<sub>4</sub>)­PC­(CO<sub>2</sub>Me)CH­(CO<sub>2</sub>Me)}­(η<sup>6</sup>-HMes*)­(CO)] (Mo–P = 2.553(2) and 2.436(2) Ǻ)

    Symmetrization in a Phosphinidene-Bridged Complex To Give a Diphosphanediyl Derivative with Metal-Centered Reactivity

    No full text
    The phosphinidene complex [Mo<sub>2</sub>Cp­(μ-κ<sup>1</sup>:κ<sup>1</sup>,η<sup>5</sup>-PC<sub>5</sub>H<sub>4</sub>)­(CO)<sub>2</sub>(η<sup>6</sup>-HMes*)] reacts with CO to give the diphosphanediyl derivative [Mo<sub>2</sub>{μ-κ<sup>1</sup>,η<sup>5</sup>:κ<sup>1</sup>,η<sup>5</sup>-(C<sub>5</sub>H<sub>4</sub>)­PP­(C<sub>5</sub>H<sub>4</sub>)}­(η<sup>6</sup>-HMes*)<sub>2</sub>]. The latter compound features unreactive lone electron pairs at phosphorus, which instead contribute to the electronic communication between metal centers via a weak π­(PP)-bonding interaction. As a result, this complex displays metal-centered acid–base and redox behavior

    Reactivity of the Phosphinidene-Bridged Complexes [Mo<sub>2</sub>Cp(μ-κ<sup>1</sup>:κ<sup>1</sup>,η<sup>5</sup>-PC<sub>5</sub>H<sub>4</sub>)(η<sup>6</sup>-1,3,5-C<sub>6</sub>H<sub>3</sub><sup><i>t</i></sup>Bu<sub>3</sub>)(CO)<sub>2</sub>] and [Mo<sub>2</sub>Cp<sub>2</sub>(μ-PH)(η<sup>6</sup>-1,3,5-C<sub>6</sub>H<sub>3</sub><sup><i>t</i></sup>Bu<sub>3</sub>)(CO)<sub>2</sub>] toward Alkynes: Multicomponent Reactions in the Presence of Ligands

    No full text
    The cyclopentadienylidene-phosphinidene complex [Mo<sub>2</sub>Cp­(μ-κ<sup>1</sup>:κ<sup>1</sup>,η<sup>5</sup>-PC<sub>5</sub>H<sub>4</sub>)­(η<sup>6</sup>-HMes*)­(CO)<sub>2</sub>] (<b>1</b>) (Cp = η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>; Mes* = 2,4,6-C<sub>6</sub>H<sub>2</sub><sup><i>t</i></sup>Bu<sub>3</sub>) reacted with RCCR′ in refluxing toluene solutions to give the corresponding phosphide derivatives [Mo<sub>2</sub>Cp­{μ-κ<sup>1</sup>,η<sup>5</sup>:κ<sup>1</sup>,η<sup>1</sup>-(C<sub>5</sub>H<sub>4</sub>)­PCRCR′}­(η<sup>6</sup>-HMes*)­(CO)<sub>2</sub>] (R = R′ = CO<sub>2</sub>Me; R = H, R′ = CO<sub>2</sub>Me, <i>p</i>-tol), displaying a phosphametallacyclobutene ring. In contrast, the phosphinidene complex [Mo<sub>2</sub>Cp<sub>2</sub>(μ-PH)­(η<sup>6</sup>-HMes*)­(CO)<sub>2</sub>] (<b>2</b>) reacted with MeO<sub>2</sub>CCCCO<sub>2</sub>Me at room temperature to give first the monocarbonyl phosphide-acyl complex [Mo<sub>2</sub>Cp<sub>2</sub>{μ-κ<sup>1</sup>:κ<sup>1</sup>,η<sup>3</sup>-PHC­(CO<sub>2</sub>Me)C­(CO<sub>2</sub>Me)­C­(O)}­(η<sup>6</sup>-HMes*)­(CO)], the latter evolving progressively to the isomeric dicarbonyl [Mo<sub>2</sub>Cp<sub>2</sub>(μ-κ<sup>1</sup>:κ<sup>1</sup>,η<sup>1</sup>-PHC­(CO<sub>2</sub>Me)C­(CO<sub>2</sub>Me)}­(η<sup>6</sup>-HMes*)­(CO)<sub>2</sub>] (Mo–P ca. 2.57 Å). When different ligands such as CO, PMe<sub>3</sub>, P­(OMe)<sub>3</sub>, or CNXyl were added at room temperature to toluene solutions containing compound <b>1</b> and different alkynes, relatively fast multicomponent reactions took place to give with good yields the corresponding phosphide-acyl complexes [Mo<sub>2</sub>Cp­{μ-κ<sup>1</sup>,η<sup>5</sup>:κ<sup>1</sup>,η<sup>1</sup>-(C<sub>5</sub>H<sub>4</sub>)­PCRCR′C­(O)}­(η<sup>6</sup>-HMes*)­(CO)<sub>2</sub>] (R = R′ = CO<sub>2</sub>Me; R = H, R′ = CO<sub>2</sub>Me, <i>p</i>-tol), and [Mo<sub>2</sub>Cp­{μ-κ<sup>1</sup>,η<sup>5</sup>:κ<sup>1</sup>,η<sup>1</sup>-(C<sub>5</sub>H<sub>4</sub>)­PC­(CO<sub>2</sub>Me)C­(CO<sub>2</sub>Me)­C­(O)}­(η<sup>6</sup>-HMes*)­(CO)­(L)] (L = PMe<sub>3</sub>, P­(OMe)<sub>3</sub>) or the related phosphide-iminoacyl derivatives [Mo<sub>2</sub>Cp­{μ-κ<sup>1</sup>,η<sup>5</sup>:κ<sup>1</sup>,η<sup>1</sup>-(C<sub>5</sub>H<sub>4</sub>)­PCRCR′C­(NXyl)}­(η<sup>6</sup>-HMes*)­(CO)<sub>2</sub>] (Xyl = 2,6-C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>; R = R′ = CO<sub>2</sub>Me; R = H, R′ = CO<sub>2</sub>Me, C­(O)­Me), respectively, all of them displaying five-membered phosphametallacyclopentenone or phosphametallacyclopentenimine rings. Separate experiments revealed that the latter complexes (R = R′ = CO<sub>2</sub>Me) could be decarbonylated photochemically to yield the corresponding monocarbonyls [Mo<sub>2</sub>Cp­{μ-κ<sup>1</sup>,η<sup>5</sup>:κ<sup>1</sup>,η<sup>3</sup>-(C<sub>5</sub>H<sub>4</sub>)­PC­(CO<sub>2</sub>Me)C­(CO<sub>2</sub>Me)­C­(X)}­(η<sup>6</sup>-HMes*)­(CO)] (X = O, NXyl), the latter rearranging at room temperature to give the corresponding phosphametallacyclobutene isomers [Mo<sub>2</sub>Cp­{μ-κ<sup>1</sup>,η<sup>5</sup>:κ<sup>1</sup>,η<sup>1</sup>-(C<sub>5</sub>H<sub>4</sub>)­PC­(CO<sub>2</sub>Me)C­(CO<sub>2</sub>Me)}­(η<sup>6</sup>-HMes*)­(CO)­(CX)]. A side product was also formed during the photochemical treatment of the dicarbonyl substrate, it being finally isolated after chromatographic workup as the alkenylphosphide-chloride complex [Mo<sub>2</sub>CpCl­{μ-κ<sup>1</sup>,η<sup>5</sup>:κ<sup>1</sup>,η<sup>2</sup>-(C<sub>5</sub>H<sub>4</sub>)­PC­(CO<sub>2</sub>Me)CH­(CO<sub>2</sub>Me)}­(η<sup>6</sup>-HMes*)­(CO)] (Mo–P = 2.553(2) and 2.436(2) Ǻ)

    Symmetrization in a Phosphinidene-Bridged Complex To Give a Diphosphanediyl Derivative with Metal-Centered Reactivity

    No full text
    The phosphinidene complex [Mo<sub>2</sub>Cp­(μ-κ<sup>1</sup>:κ<sup>1</sup>,η<sup>5</sup>-PC<sub>5</sub>H<sub>4</sub>)­(CO)<sub>2</sub>(η<sup>6</sup>-HMes*)] reacts with CO to give the diphosphanediyl derivative [Mo<sub>2</sub>{μ-κ<sup>1</sup>,η<sup>5</sup>:κ<sup>1</sup>,η<sup>5</sup>-(C<sub>5</sub>H<sub>4</sub>)­PP­(C<sub>5</sub>H<sub>4</sub>)}­(η<sup>6</sup>-HMes*)<sub>2</sub>]. The latter compound features unreactive lone electron pairs at phosphorus, which instead contribute to the electronic communication between metal centers via a weak π­(PP)-bonding interaction. As a result, this complex displays metal-centered acid–base and redox behavior
    corecore