164 research outputs found

    Efficient Instruction and Data Caching for High Performance Embedded Processors

    Get PDF
    In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration

    Monolithic integration of Giant Magnetoresistance (GMR) devices onto standard processed CMOS dies

    Get PDF
    Giant Magnetoresistance (GMR) based technology is nowadays the preferred option for low magnetic fields sensing in disciplines such as biotechnology or microelectronics. Their compatibility with standard CMOS processes is currently investigated as a key point for the development of novel applications, requiring compact electronic readout. In this paper, such compatibility has been experimentally studied with two particular non-dedicated CMOS standards: 0.35 μm from AMS (Austria MicroSystems) and 2.5 μm from CNM (Centre Nacional de Microelectrònica, Barcelona) as representative examples. GMR test devices have been designed and fabricated onto processed chips from both technologies. In order to evaluate so obtained devices, an extended characterization has been carried out including DC magnetic measurements and noise analysis. Moreover, a 2D-FEM (Finite Element Method) model, including the dependence of the GMR device resistance with the magnetic field, has been also developed and simulated. Its potential use as electric current sensors at the integrated circuit level has also been demonstrated

    Practical Characterization of Cell-Electrode Electrical Models in Bio-Impedance Assays

    Get PDF
    This paper presents the fitting process followed to adjust the parameters of the electrical model associated to a cell-electrode system in Electrical Cell-substrate Impedance Spectroscopy (ECIS) technique, to the experimental results from cell-culture assays. A new parameter matching procedure is proposed, under the basis of both, mismatching between electrodes and time-evolution observed in the system response, as consequence of electrode fabrication processes and electrochemical performance of electrode-solution interface, respectively. The obtained results agree with experimental performance, and enable the evaluation of the cell number in a culture, by using the electrical measurements observed at the oscillation parameters in the test circuits employed.Ministerio de Economía y Competitividad TEC2013-46242-C3-1-

    Antioxidant activity of isolated compounds in non-volatile residue from orange essential oil

    Get PDF
    6 páginas, 3 figuras.[ES] Existe un creciente interés en la industria alimentaria y en la medicina preventiva por la búsqueda de «antioxidantes naturales», por lo que nos planteamos evaluar la actividad antioxidante del residuo no volátil del aceite esencial de naranja contra la oxidación del aceite de oliva sin retinar y de reciente extracción. Mediante destilación del aceite esencial de naranja se obtuvo el residuo no-volátil, el cual se fraccionó en columna de silica gel 60. La actividad antioxidante fue medida por el valor de peróxidos producidos por el aceite de oliva al provocar la oxidación por calentamiento a 70 °C durante 48 h. Se aislaron seis compuestos mediante H PLC preparativo de los cuales cuatro tuvieron actividad antioxidante. Usando métodos espectroscópicos se identificaron a-tocoferol y tres flavonas metoxiladas. Con este estudio se confirmó que la fracción no volátil del aceite esencial de naranja contiene antioxidantes naturales diferentes al a-tocoferol.[EN] There has been a growing interest in the food industry and in preventive medicine to search for «natural antioxidants». Therefore the objetive of this study was to evaluate the antioxidant activity of the non-volatile residue of essential orange oil in the oxidation of unrefined and freshly extracted olive oil. Essential orange oil was distilled to obtain a non-volatile residue and fracctionated on a Silica Gel 60 column. The antioxidant activity was determined by measuring peroxide value obtained after heating olive oil at 70 °C for 48 h. Six compounds were isolated and purified, four of these had antioxidant activity, a-tocopherol and three methoxylated flavones were identified using spectroscopic methods. This study confirmed that non-volatile fractions of essential orange oil contain natural antioxidants diferent from a-tocopherol.Peer reviewe

    Monitoring Muscle Stem Cell Cultures with Impedance Spectroscopy

    Get PDF
    The aim of this work is to present a new circuit for the real-time monitoring the processes of cellular growth and differentiation of skeletal myoblast cell cultures. An impedance spectroscopy Oscillation-Based technique is proposed for the test circuit, converting the biological system into a voltage oscillator, and avoiding the use of very high performance circuitry or equipment. This technique proved to be successful in the monitoring of cell cultures growth levels and could be useful for determining the degree of differentiation achieved, of practical implications in tissue engineering.Ministerio de Economía y Competitividad TEC2013-46242-C3-1-

    Software para el aprendizaje de convertidores digitales-analógicos.

    Get PDF
    Se presenta un paquete de software didáctico que facilita el proceso de enseñanza/ aprendizaje de la electrónica, en concreto, de convertidores digital-analógicos. Consta de una sección expositiva, en la que se describen los contenidos de la materia, más un conjunto de simulaciones que permiten al alumno conocer el funcionamiento interno del convertidor, la evolución de sus parámetros y los valores intermedios de sus variables durante la ejecución del algoritmo de conversión D/A. Asímismo, se incluye un conjunto tutoriales basados en animaciones que muestran como se ejecutan las simulaciones, y el funcionamiento del Convertidor Digital-Analógico (CDA) seleccionado

    Characterization of Implanted Stents through Neointimal Tissue Bioimpedance Simulations

    Get PDF
    This work describes how is possible the definition of the light hole or lumen in implanted stents affected by restenosis processes using the BioImpedance (BI) as biomarker. The main approach is based on the fact that neointimal tissues implied in restenosis can be detected and measured thanks to their respective conductivity and dielectric properties. For this goal, it is proposed a four-electrode setup for bioimpedance measurement. The influence of the several involved tissues in restenosis: fat, muscle, fiber, endothelium and blood, have been studied at several frequencies, validating the setup and illustrating the sensitivity of each one. Finally, a real example using a standard stent, has been analyzed for stable and vulnerable plaques in restenosis test cases, demonstrating that the proposed method is useful for the stent obstruction test. Bioimpedance simulation test has been performed using the electric physics module in COMSOL Multiphysics®.Junta de Andalucía 2017/TIC-17

    Elevated sea temperature combined with dietary methionine levels affect feed intake and appetite-related neuropeptide expression in the brains of juvenile cobia (Rachycentron canadum)

    Get PDF
    This study aimed to determine the impact of elevated temperature combined with different levels of dietary methionine concentrations on feed intake (FI) and brain expression of selected neuropeptides and one receptor involved in appetite control in juvenile cobia (approximately 3.7 g body weight). The genes studies were neuropeptide y, npy; agouti-related protein, agrp; cocaine- and amphetamine-regulated transcript, cart; cholecystokinin, cck and melanocortin 4 receptor; mc4r. The cobia were reared at typical sea water temperature in Vietnam (30 degrees C) and elevated temperature (34 degrees C; selected as one of the predicted scenarios of climate change). The fish were fed diets with different levels of methionine: deficient (M9; 9.1 g/kg), sufficient (M12; 12.8 g/kg) and surplus (M16, 16.8 g/kg) for 6 weeks (triplicate tanks per treatment). Both dietary methionine concentration and temperature affected FI in cobia. Dietary methionine deficiency (i.e., M9) and elevated temperature reduced FI in cobia. Temperature significantly influenced the mRNA expression of agrp, cart, cck and mc4r. Expression of the orexigenic neuropeptide npy was consistently higher before the meal than after the meal for all diets and at both temperatures. At 30 degrees C, prefeeding levels of npy correlated with both increased methionine levels and FI. The interaction between dietary methionine and temperature on the levels of brain npy expression was significant (P<0.05). There was higher brain expression of agrp, cart and cck in cobia at 34 degrees C than in fish at 30 degrees C, which was correlated with a lower FI. In conclusion, both feeding, temperature and/or dietary methionine levels affected the brain expression of npy and agrp, cart, cck and mc4r. This suggests that these neuropeptides as well as the mc4r receptor are actively involved in adjusting feed intake to compensate for changing energetic demands, as well as metabolic adjustments due to the variable availability of methionine at elevated temperature.LA/P/0101/2020; QZA-0485 SRV-13/0010info:eu-repo/semantics/publishedVersio

    Effect of increased rearing temperature on digestive function in cobia early juvenile

    Get PDF
    The present study is focused to elucidate the main characteristics of the digestive function of this carnivorous fast-growing fish living at high temperatures. With this aim, we have examined the effects of an increased temperature from 30 to 34 °C on the daily pattern of gastrointestinal pH, enzymatic proteolytic digestive activity and the feed transit time in early juveniles of cobia (Rachycentron canadum), a species living in tropical and subtropical waters with an increasing aquaculture production. Fish were fed two meals a day. Gastric luminal pH was permanently acidic (mean pH values: 2.76-4.74) while the intestinal pH increased from neutral/slightly acidic to slightly alkaline when the digesta was present, with an increasing alkalinity from proximal to distal intestine (mean pH values: 6.05 to 7.69). The temperature did not affect the gastric pH but a slightly higher acidity was induced in the intestine at 34 °C. Pepsin activity showed a daily rhythm at 30 °C with maximum in the middle of the light period, while at 34 °C some hourly changes coinciding with feed adding without a clear daily trend during the 24-h period were observed. The trypsin activity exhibited a daily rhythm at both temperatures with an increase after morning feeding to reach a maximum several hours later. Average pepsin activity during the daily cycle was slightly higher at 34 °C (6.1 and 7.3 U mg-1 BW at 30 and 34 °C respectively), but values were significantly different only at 8 and 24 h after the morning meal. Similarly, the trypsin activity was significantly affected by the temperature only at 8 and 16 h after the morning meal, but daily activity averages were similar (1.20 and 1.29 U g-1 BW at 30 and 34 °C respectively). The partial transit rates of the first meal in the stomach for each period inter-samplings were higher during the first 4-h period and decreased progressively along the rest of the 24-h cycle at both temperatures, but no significant differences were detected at 30 °C. In addition, the transit was notably faster at 34 °C particularly during the first 8 h after feeding, with rates between 100 and 65% of total volume displaced (intake or released) during each 4-h period. In the intestine the transit rate was relatively constant and similar at both temperatures during 12 h after feeding. Then the rates remained very low during the following 12 h. Residence time of the first meal was longer at 30 than at 34 °C, particularly in the stomach (12 h:02 min vs 4 h:54 min respectively). In the intestine the difference was not so large (8 h:18 min vs 6 h:24 min respectively). In a parallel study under same conditions, cobia reared at 30 °C grew faster and showed a more favorable feed conversion ratio than those at elevated temperature (34 °C). The present results indicate that at 34 °C, a subtle increase of proteolytic activity cannot compensate for the faster gut transit rate. Therefore, 30 °C is more appropriate temperature for the early on-growing of cobia because at higher temperatures the digestion efficiency decrease being one of the causes for a lower growth.Agência financiadora European Union (EU) 691150 MINECO, Spain + FEDER/ERDF contribution EFISHDIGESTAGL2014-52888 European Social Fund, the Operational Programme Human Potential IF/00482/2014/CP1217/CT0005 Portuguese Foundation for Science and Technology Portuguese Foundation for Science and Technology UDI/Multi/04326/2013 Norwegian Agency for Development Cooperation NORHED QZA-0485 SRV-13/0010info:eu-repo/semantics/publishedVersio

    Oscillation-Based Spectroscopy for Cell-Culture Monitorization

    Get PDF
    Biological Impedance is a physical property related to the state and inherent evolution of biological samples. Among the existing impedance measurement methods, Oscillation-Based (OB) tests are a simple and smart solution to indirectly measure impedance correlated with the amplitude and frequency of the generated oscillation which are proportional to the sample under test. An OB test requires tuning of the system blocks to specifications derived from every measurement problem. The OB setup must be done to obtain the optimum measurement sensitivity for the specific constraints imposed by the system under test, electronic interfaces, and electrodes employed for test. This work proposes the extension of OB measurement systems to spectroscopy test, enabling a completely new range of applications for this technology without the restrictions imposed by setting a fixed frequency on the electrical oscillator. Some examples will be presented to the measurement of cell cultures samples, considering the corresponding circuit interfaces and electric models for the electrode-cell system. The proposed analysis method allows the selection of the best oscillator elements for optimum sensitivity range in amplitude and frequency oscillation values, when a specific cell culture is monitored for the OB system
    • …
    corecore