198 research outputs found

    CO in OH/IR stars close to the Galactic centre

    Full text link
    Aims: A pilot project has been carried out to measure circumstellar CO emission from three OH/IR stars close to the Galactic centre. The intention was to find out whether it would be possible to conduct a large-scale survey for mass-loss rates using, for example, the Atacama Large Millimeter Array (ALMA). Such a survey would increase our understanding of the evolution of the Galactic bulge. Methods: Two millimetre-wave instruments were used: the Nobeyama Millimeter Array at 115 GHz and the Submillimeter Array at 230 GHz. An interferometer is necessary as a `spatial filter' in this region of space because of the confusion with interstellar CO emission. Results: Towards two of the stars, CO emission was detected with positions and radial velocities coinciding within the statistical errors with the corresponding data of the associated OH sources. However, for one of the stars the line profile is not what one expects for an unresolved expanding circumstellar envelope. We believe that this CO envelope is partially resolved and that this star therefore is a foreground star not belonging to the bulge. Conclusions: The results of the observations have shown that it is possible to detect line profiles of circumstellar CO from late-type stars both within and in the direction of the Galactic bulge. ALMA will be able to detect CO emission in short integrations with sensitivity sufficient to estimate mass-loss rates from a large number of such stars.Comment: 5 pages, 3 figure

    Protostars and Outflows in the NGC7538 - IRS9 Cloud Core

    Full text link
    New high resolution observations of HCO+ J=1-0, H13CN J=1-0, SO 2,2 - 1,1, and continuum with BIMA at 3.4 mm show that the NGC7538 - IRS9 cloud core is a site of active ongoing star formation. Our observations reveal at least three young bipolar molecular outflows, all ~ 10,000 -- 20,000 years old. IRS9 drives a bipolar, extreme high velocity outflow observed nearly pole on. South of IRS9 we find a cold, protostellar condensation with a size of ~ 14" x 6" with a mass > 250 Msun. This is the center of one of the outflows and shows deep, red-shifted self absorption in HCO+, suggesting that there is a protostar embedded in the core, still in a phase of active accretion. This source is not detected in the far infrared, suggesting that the luminosity < 10^4 Lsun; yet the mass of the outflow is ~ 60 Msun. The red-shifted HCO+ self-absorption profiles observed toward the southern protostar and IRS9 predict accretion rates of a few times 10^-4 to 10^-3 Msun/yr. Deep VLA continuum observations at 3.6 cm show that IRS9 coincides with a faint thermal VLA source, but no other young star in the IRS9 region has any detectable free-free emission at a level of ~ 60 microJy at 3.6 cm. The HCO+ abundance is significantly enhanced in the hot IRS9 outflow. A direct comparison of mass estimates from HCO+ and CO for the well-characterized red-shifted IRS9 outflow predicts an HCO+ enhancement of more than a factor of 30, or [HCO+/H2] >= 6 10^-8.Comment: 40 pages, 3 tables and 10 figures included; to appear in Ap

    A new sample of OH/IR stars in the Galactic center

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    The detection of Class I methanol masers towards regions of low-mass star formation

    Full text link
    Six young bipolar outflows in regions of low-to-intermediate-mass star formation were observed in the 7_0-6_1A+, 8_0-7_1A+, and 5_{-1}-4_0E methanol lines at 44, 95, and 84 GHz, respectively. Narrow features were detected towards NGC 1333IRAS4A, HH 25MMS, and L1157 B1. Flux densities of the detected lines are no higher than 11 Jy, which is much lower than the flux densities of strong maser lines in regions of high-mass star formation. Analysis shows that most likely the narrow features are masers.Comment: 12 pages, 6 figures, to be published in Astronomy Report

    HI Narrow Line Absorption in Dark Clouds

    Get PDF
    We have used the Arecibo telescope to carry out an survey of 31 dark clouds in the Taurus/Perseus region for narrow absorption features in HI (λ\lambda 21cm) and OH (1667 and 1665 MHz) emission. We detected HI narrow self--absorption (HINSA) in 77% of the clouds that we observed. HINSA and OH emission, observed simultaneously are remarkably well correlated. Spectrally, they have the same nonthermal line width and the same line centroid velocity. Spatially, they both peak at the optically--selected central position of each cloud, and both fall off toward the cloud edges. Sources with clear HINSA feature have also been observed in transitions of CO, \13co, \c18o, and CI. HINSA exhibits better correlation with molecular tracers than with CI. The line width of the absorption feature, together with analyses of the relevant radiative transfer provide upper limits to the kinetic temperature of the gas producing the HINSA. Some sources must have a temperature close to or lower than 10 K. The correlation of column densities and line widths of HINSA with those characteristics of molecular tracers suggest that a significant fraction of the atomic hydrogen is located in the cold, well--shielded portions of molecular clouds, and is mixed with the molecular gas. The average number density ratio [HI]/[\h2] is 1.5×1031.5\times10^{-3}. The inferred HI density appears consistent with but is slightly higher than the value expected in steady state equilibrium between formation of HI via cosmic ray destruction of H2_2 and destruction via formation of H2_2 on grain surfaces. The distribution and abundance of atomic hydrogen in molecular clouds is a critical test of dark cloud chemistry and structure, including the issues of grain surface reaction rates, PDRs, circulation, and turbulent diffusion.Comment: 40 pages, 10 figures, accepted by Ap

    CO line observations of OH/IR stars in the inner Galactic Bulge: Characteristics of stars at the tip of the AGB

    Get PDF
    12CO and 13CO lines, as well as a mm-wave continuum, have been observed for a sample of 22 OH/IR stars in directions within 2 degrees of the Galactic Centre. Photometry data have been gathered from the literature to construct SEDs and to determine pulsational variability. Radiative transfer models have been used to interpret the data. All stars in the sample were detected in at least one CO line, and 8 objects were detected in 324 GHz continuum. Based on luminosity criteria, the sample is divided into 17 objects that most likely lie within the inner Galactic Bulge, and 5 objects that are most likely foreground objects. The median luminosity of the inner-Galactic-Bulge objects, 5600 Lsun, corresponds to an initial mass in the range 1.2-1.6 Msun, indicating that these OH/IR stars descend from solar-type stars. The objects in this sub-sample are further divided into two classes based on their SED characteristics: 11 objects have SEDs that are well matched by models invoking dust envelopes extending from a few stellar radii and outwards, while 6 objects are better modelled as having detached dust envelopes with inner radii in the range 200-600 au and warmer central stars. The former objects have periodic variability, while the latter objects are predominantly non-periodic. The median gas-mass-loss rate, gas terminal expansion velocity, gas-to-dust mass ratio, and circumstellar 12CO/13CO abundance ratio have been estimated to be 2x10{-5} Msun/yr, 18 km/s, 200 (excluding the sources with detached dust envelopes, which show markedly lower gas-to-dust ratios), and 5, respectively, for the inner-Galactic-Bulge objects. The inner-Galactic-Bulge OH/IR stars studied here constitute an excellent sample of equidistant objects for the purpose of understanding the evolution of the mass-loss-rate characteristics at the tip of the AGB.Comment: 32 pages, 17 figure

    Shock-Excited Maser Emission from Supernova Remnants: G32.8-0.1, G337.8-0.1, G346.6-0.2, and the HB3/W3 Complex

    Full text link
    We present the results of VLA observations in the ground-state hydroxyl (OH) transition at 1720 MHz toward 20 supernova remnants (SNRs). We detect compact emission from four objects. For three of these objects (G32.8-0.1, G337.8-0.1, and G346.6-0.2), we argue that the emission results from masers which are shock-excited due to the interaction of the SNR and an adjacent molecular cloud. We observe a characteristic Zeeman profile in the Stokes V spectrum, which allows us to derive a magnetic field of 1.5 and 1.7 mG for G32.8-0.1 and G346.6-0.2, respectively. The velocity of the masers also allows us to determine a kinematic distance to the SNR. Our criteria for a maser to be associated with an SNR along the line of sight are that the position and velocity of the maser and SNR must agree, and the OH(1720) emission must be unaccompanied by other OH lines.Comment: Accepted to the Astronomical Journal (19 pages total, 6 figures, 4 tables

    Absolute positions of 6.7-GHz methanol masers

    Full text link
    The ATCA, MERLIN and VLA interferometers were used to measure the absolute positions of 35 6.7 GHz methanol masers to subarcsecond or higher accuracy. Our measurements represent essential preparatory data for Very Long Baseline Interferometry, which can provide accurate parallax and proper motion determinations of the star-forming regions harboring the masers. Our data also allow associations to be established with infrared sources at different wavelengths. Our findings support the view that the 6.7 GHz masers are associated with the earliest phases of high-mass star formation.Comment: A&A accepted 29 pages, 6 figures, 5 table

    Evolved star water maser cloud size determined by star size

    Full text link
    Cool, evolved stars undergo copious mass loss but the details of how the matter is returned to the ISM are still under debate. We investigated the structure and evolution of the wind at 5 to 50 stellar radii from Asymptotic Giant Branch and Red Supergiant stars. 22-GHz water masers around seven evolved stars were imaged using MERLIN, at sub-AU resolution. Each source was observed at between 2 and 7 epochs (several stellar periods). We compared our results with long-term Pushchino single dish monitoring. The 22-GHz emission is located in ~spherical, thick, unevenly filled shells. The outflow velocity doubles between the inner and outer shell limits. Water maser clumps could be matched at successive epochs separated by <2 years for AGB stars, or at least 5 years for RSG. This is much shorter than the decades taken for the wind to cross the maser shell, and comparison with spectral monitoring shows that some features fade and reappear. In 5 sources, most of the matched features brighten or dim in concert from one epoch to the next. One cloud in W Hya was caught in the act of passing in front of a background cloud leading to 50-fold, transient amplification. The masing clouds are 1-2 orders of magnitude denser than the wind average and contain a substantial fraction of the mass loss in this region, with a filling factor <1%. The RSG clouds are ~10x bigger than those round the AGB stars. Proper motions are dominated by expansion, with no systematic rotation. The maser clouds survive for decades (the shell crossing time) but the masers are not always beamed in our direction. Radiative effects cause changes in flux density throughout the maser shells on short timescales. Cloud size is proportional to parent star size; clouds have a similar radius to the star in the 22-GHz maser shell. Stellar properties such as convection cells must determine the clumping scale.Comment: Accepted by A&A 2012 July 10 Main text 29 pages, 62 figures Appendix 44 pages, 23 figure

    Observations of the circumstellar water 110 → 110 and ammonia 110 → 00 lines in IRC +10216 by the Odin satellite

    Get PDF
    Submillimeter lines of H 2O and NH 3 have been detected in the carbon star IRC +10216 (CW Leo) with the Odin submillimeter satellite. The detection of the J K-, K+ = 1 10 → 1 10 557 GHz line of ortho-H 2O confirms the earlier detection in the same source with SWAS. The detection of the J K = 1 0 rarr; 0 0 572 GHz line represents the first observation of the ground-state rotational transition of NH 3 in a stellar envelope. By fitting a molecular line transfer model to the observed lines, we derive an ortho-H 20 abundance of 2.4 × 10 -6, which is consistent with estimates from the SWAS observation. The derived ortho-NH 3 abundance of 1 × 10 -6 relative to H 2 is significantly higher than those derived from 24 GHz inversion transitions and is slightly higher than those from vibrational transitions in the infrared band. The high H 2O and NH 3 abundances in the carbon-rich star IRC+10216 underscore shortcomings in the conventional gas-phase LTE and non-LTE chemical models. © 2006. The American Astronomical Society. All rights reserved.published_or_final_versio
    corecore