253 research outputs found

    Diacetylenic lipids in the design of stable lipopolymers able to complex and protect plasmid DNA

    Get PDF
    Different viral and non-viral vectors have been designed to allow the delivery of nucleic acids in gene therapy. In general, non-viral vectors have been associated with increased safety for in vivo use; however, issues regarding their efficacy, toxicity and stability continue to drive further research. Thus, the aim of this study was to evaluate the potential use of the polymerizable diacetylenic lipid 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) as a strategy to formulate stable cationic lipopolymers in the delivery and protection of plasmid DNA. Cationic lipopolymers were prepared following two different methodologies by using DC8,9PC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and the cationic lipids (CL) 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), stearylamine (SA), and myristoylcholine chloride (MCL), in a molar ratio of 1:1:0.2 (DMPC:DC8,9PC:CL). The copolymerization methodology allowed obtaining cationic lipopolymers which were smaller in size than those obtained by the cationic addition methodology although both techniques presented high size stability over a 166-day incubation period at 4C. Cationic lipopolymers containing DOTAP or MCL were more efficient in complexing DNA than those containing SA. Moreover, lipopolymers containing DOTAP were found to form highly stable complexes with DNA, able to resist serum DNAses degradation. Furthermore, neither of the cationic lipopolymers (with or without DNA) induced red blood cell hemolysis, although metabolic activity determined on the L-929 and Vero cell lines was found to be dependent on the cell line, the formulation and the presence of DNA. The high stability and DNA protection capacity as well as the reduced toxicity determined for the cationic lipopolymer containing DOTAP highlight the potential advantage of using lipopolymers when designing novel nonviral carrier systems for use in in vivo gene therapy. Thus, this work represents the first steps toward developing a cationic lipopolymer-based gene delivery system using polymerizable and cationic lipids.Instituto Multidisciplinario de Biología Celula

    Dibucaine in Ionic-Gradient Liposomes: Biophysical, Toxicological, and Activity Characterization

    Get PDF
    Administration of local anesthetics is one of the most effective pain control techniques for postoperative analgesia. However, anesthetic agents easily diffuse into the injection site, limiting the time of anesthesia. One approach to prolong analgesia is to entrap local anesthetic agents in nanostructured carriers (e.g., liposomes). Here, we report that using an ammonium sulphate gradient was the best strategy to improve the encapsulation (62.6%) of dibucaine (DBC) into liposomes. Light scattering and nanotracking analyses were used to characterize vesicle properties, such as, size, polydispersity, zeta potentials, and number. In vitro kinetic experiments revealed the sustained release of DBC (50% in 7 h) from the liposomes. In addition, in vitro (3T3 cells in culture) and in vivo (zebrafish) toxicity assays revealed that ionic-gradient liposomes were able to reduce DBC cyto/cardiotoxicity and morphological changes in zebrafish larvae. Moreover, the anesthesia time attained after infiltrative administration in mice was longer with encapsulated DBC (27 h) than that with free DBC (11 h), at 320 μM (0.012%), confirming it as a promising long-acting liposome formulation for parenteral drug administration of dibucaine.Fil: Couto, Verônica M.. Universidade Estadual de Campinas; BrasilFil: Prieto, Maria Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB | Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB | Universidad Nacional de la Plata. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB; ArgentinaFil: Igartúa, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB | Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB | Universidad Nacional de la Plata. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB; ArgentinaFil: Feas, Daniela Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB | Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB | Universidad Nacional de la Plata. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB; ArgentinaFil: Ribeiro, Lígia N.M.. Universidade Estadual de Campinas; BrasilFil: Silva, Camila M.G.. Universidade Estadual de Campinas; BrasilFil: Castro, Simone R.. Universidade Estadual de Campinas; BrasilFil: Guilherme, Viviane A.. Universidade Estadual de Campinas; BrasilFil: Dantzger, Darlene D.. Universidade Estadual de Campinas; BrasilFil: Machado, Daisy. Universidade Estadual de Campinas; BrasilFil: Alonso, Silvia del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB | Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB | Universidad Nacional de la Plata. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB; ArgentinaFil: de Paula, Eneida. Universidade Estadual de Campinas; Brasi

    Diacetylenic lipids in the design of stable lipopolymers able to complex and protect plasmid DNA

    Get PDF
    Different viral and non-viral vectors have been designed to allow the delivery of nucleic acids in gene therapy. In general, non-viral vectors have been associated with increased safety for in vivo use; however, issues regarding their efficacy, toxicity and stability continue to drive further research. Thus, the aim of this study was to evaluate the potential use of the polymerizable diacetylenic lipid 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) as a strategy to formulate stable cationic lipopolymers in the delivery and protection of plasmid DNA. Cationic lipopolymers were prepared following two different methodologies by using DC8,9PC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and the cationic lipids (CL) 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), stearylamine (SA), and myristoylcholine chloride (MCL), in a molar ratio of 1:1:0.2 (DMPC:DC8,9PC:CL). The copolymerization methodology allowed obtaining cationic lipopolymers which were smaller in size than those obtained by the cationic addition methodology although both techniques presented high size stability over a 166-day incubation period at 4C. Cationic lipopolymers containing DOTAP or MCL were more efficient in complexing DNA than those containing SA. Moreover, lipopolymers containing DOTAP were found to form highly stable complexes with DNA, able to resist serum DNAses degradation. Furthermore, neither of the cationic lipopolymers (with or without DNA) induced red blood cell hemolysis, although metabolic activity determined on the L-929 and Vero cell lines was found to be dependent on the cell line, the formulation and the presence of DNA. The high stability and DNA protection capacity as well as the reduced toxicity determined for the cationic lipopolymer containing DOTAP highlight the potential advantage of using lipopolymers when designing novel nonviral carrier systems for use in in vivo gene therapy. Thus, this work represents the first steps toward developing a cationic lipopolymer-based gene delivery system using polymerizable and cationic lipids.Instituto Multidisciplinario de Biología Celula

    Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets

    Get PDF
    Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current Ic(H), magnetization M(H) and ac-susceptibility Xac(H) in a broad temperature range. Due to the coherence length divergence at Tc, a crossover to wire network behavior is experimentally found. While pinning occurs in a wide temperature range up to Tc, wire network behavior is only present in a very narrow temperature window close to Tc. In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished

    The supernova rate in local galaxy clusters

    Get PDF
    We report a measurement of the supernova (SN) rates (Ia and core-collapse) in galaxy clusters based on the 136 SNe of the sample described in Cappellaro et al. (1999) and Mannucci et al. (2005). Early-type cluster galaxies show a type Ia SN rate (0.066 SNuM) similar to that obtained by Sharon et al. (2007) and more than 3 times larger than that in field early-type galaxies (0.019 SNuM). This difference has a 98% statistical confidence level. We examine many possible observational biases which could affect the rate determination, and conclude that none of them is likely to significantly alter the results. We investigate how the rate is related to several properties of the parent galaxies, and find that cluster membership, morphology and radio power all affect the SN rate, while galaxy mass has no measurable effect. The increased rate may be due to galaxy interactions in clusters, inducing either the formation of young stars or a different evolution of the progenitor binary systems. We present the first measurement of the core-collapse SN rate in cluster late-type galaxies, which turns out to be comparable to the rate in field galaxies. This suggests that no large systematic difference in the initial mass function exists between the two environments.Comment: MNRAS, revised version after referee's comment

    Experimental validation of Lyot stop apodization in ground-based coronagraphy

    Get PDF
    ABSTRACT We show that the use of apodizing functions at the coronagraph Lyot plane may be useful for improving the image contrast of ground-based coronagraphs. An experimental set-up consisting of a tip–tilt mirror, a coronagraph and a low-noiseEMCCDcamerawas implemented at theWilliam Herschel Telescope. Images were taken in the I band, which meant that the D/r0 value was around 10. Experimental results confirm that, for moderately aberrated wavefronts, our instrument works as theoretically expected, and that the contrast value attained is high enough to provide direct detection of faint companions.This research was supported by the Ministerio de Economía y Competitividad under project FIS2012-31079 and the Fundación Séneca of Murcia under projects 15419/PI/10 and 15345/PI/10

    SN 2006gy: was it really extra-ordinary?

    Full text link
    We present an optical photometric and spectroscopic study of the very luminous type IIn SN 2006gy for a time period spanning more than one year. In photometry, a broad, bright (M_R~-21.7) peak characterizes all BVRI light curves. Afterwards, a rapid luminosity fading is followed by a phase of slow luminosity decline between day ~170 and ~237. At late phases (>237 days), because of the large luminosity drop (>3 mag), only upper visibility limits are obtained in the B, R and I bands. In the near-infrared, two K-band detections on days 411 and 510 open new issues about dust formation or IR echoes scenarios. At all epochs the spectra are characterized by the absence of broad P-Cygni profiles and a multicomponent Halpha profile, which are the typical signatures of type IIn SNe. After maximum, spectroscopic and photometric similarities are found between SN 2006gy and bright, interaction-dominated SNe (e.g. SN 1997cy, SN 1999E and SN 2002ic). This suggests that ejecta-CSM interaction plays a key role in SN 2006gy about 6 to 8 months after maximum, sustaining the late-time-light curve. Alternatively, the late luminosity may be related to the radioactive decay of ~3M_sun of 56Ni. Models of the light curve in the first 170 days suggest that the progenitor was a compact star (R~6-8 10^(12)cm, M_ej~5-14M_sun), and that the SN ejecta collided with massive (6-10M_sun), opaque clumps of previously ejected material. These clumps do not completely obscure the SN photosphere, so that at its peak the luminosity is due both to the decay of 56Ni and to interaction with CSM. A supermassive star is not required to explain the observational data, nor is an extra-ordinarily large explosion energy.Comment: 33 pages, 8 figures. Accepted by ApJ. Paper with high-resolution figures available at http://web.oapd.inaf.it/supern/sn2006gy_astroph/agnoletto_2006gy.pd

    Diacetylenic lipids in the design of stable lipopolymers able to complex and protect plasmid DNA

    Get PDF
    Different viral and non-viral vectors have been designed to allow the delivery of nucleic acids in gene therapy. In general, non-viral vectors have been associated with increased safety for in vivo use; however, issues regarding their efficacy, toxicity and stability continue to drive further research. Thus, the aim of this study was to evaluate the potential use of the polymerizable diacetylenic lipid 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) as a strategy to formulate stable cationic lipopolymers in the delivery and protection of plasmid DNA. Cationic lipopolymers were prepared following two different methodologies by using DC8,9PC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and the cationic lipids (CL) 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), stearylamine (SA), and myristoylcholine chloride (MCL), in a molar ratio of 1:1:0.2 (DMPC:DC8,9PC:CL). The copolymerization methodology allowed obtaining cationic lipopolymers which were smaller in size than those obtained by the cationic addition methodology although both techniques presented high size stability over a 166-day incubation period at 4C. Cationic lipopolymers containing DOTAP or MCL were more efficient in complexing DNA than those containing SA. Moreover, lipopolymers containing DOTAP were found to form highly stable complexes with DNA, able to resist serum DNAses degradation. Furthermore, neither of the cationic lipopolymers (with or without DNA) induced red blood cell hemolysis, although metabolic activity determined on the L-929 and Vero cell lines was found to be dependent on the cell line, the formulation and the presence of DNA. The high stability and DNA protection capacity as well as the reduced toxicity determined for the cationic lipopolymer containing DOTAP highlight the potential advantage of using lipopolymers when designing novel nonviral carrier systems for use in in vivo gene therapy. Thus, this work represents the first steps toward developing a cationic lipopolymer-based gene delivery system using polymerizable and cationic lipids.Instituto Multidisciplinario de Biología Celula
    corecore