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ABSTRACT 

Administration of local anaesthetics (LA) is one of the most effective pain control techniques for 

postoperative analgesia. However, anaesthetic agents easily diffuse into the injection site, limiting 

the time of anaesthesia. One approach to prolong analgesia is to entrap LA in nanostructured 

carriers (e.g. liposomes). Here we report that using an ammonium sulphate gradient was the best 

strategy to improve the encapsulation (62.6%) of dibucaine (DBC) into liposomes. Light scattering 

and nanotracking analyses were used to characterise vesicle properties, such as, size, 

polydispersity, zeta potentials and number. In vitro kinetic experiments revealed the sustained 

release of DBC (50% in 7 h) from the liposomes. Additionally, in vitro (3T3 cells in culture) and in 

vivo (zebrafish) toxicity assays revealed that ionic-gradient liposomes were able to reduce DBC 

cyto/cardiotoxicity, as well as morphological changes in zebrafish larvae. Moreover, the anaesthesia 

time attained after infiltrative administration in mice was longer with encapsulated DBC (27 h) than 

with free DBC (11 h), at 320 µM (0.012%), confirming it as a promising long-acting liposome 

formulation for parenteral drug administration of dibucaine. 

 

 

Keywords: liposomes, encapsulation, toxicity, controlled release/delivery, injectables, stability, 

formulation. 

 

 

Abbreviations: ammonium sulphate gradient liposomes (LUV AS); ammonium sulphate gradient 

liposomes with dibucaine (LUVDBCAS); area under the effect curve (AUEC); conventional liposomes 

(LUV 7.4); conventional gradient liposomes with dibucaine (LUVDBC7.4); dibucaine (DBC); drug 

delivery system (DDS); days post fertilisation (dpf); dynamic light scattering (DLS); encapsulation 

efficiency (%EE); hour post treatment (hpt); large unilamellar vesicles (LUV); local anaesthetic (LA); 

maximum possible effect (%MPE); methyl thiazolyl tetrazolium (MTT); nanoparticle tracking 

analysis (NTA); pH gradient liposomes (LUV 5.5); pH gradient liposomes with dibucaine 

(LUVDBC5.5); polydispersity index (PDI); zeta potential (ZP).  
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INTRODUCTION 

Pain management is still an on-going issue, especially in intensive care units.1 Moderate to severe 

postoperative pain was experienced by many patients who underwent orthopaedic, maxillofacial, breast, inguinal 

hernia, or varicose vein surgeries, amongst others.2 The use of local anaesthetic (LA) wound infiltration for 

postoperative analgesia has been demonstrated to be a highly effective pain control technique.3–5 Additionally, LA 

relieves pain without eliciting undesirable side effects, unlike systemic analgesics6. The main limitation to their 

widespread usage is the short effect duration (2–6 hours), which requires repeated administration, leading to a 

reduction in patient compliance.2 

One approach to prolong analgesia is to entrap the LA into a drug delivery system (DDS), that can act as 

a reservoir at the site of injection.7,8 Since 1970, liposomes have been tested as carriers for hydrophilic and 

lipophilic drugs.9 Liposomes are composed of phospholipids, which self-enclose to form vesicles encompassing 

one or more aqueous cores.10,11 Currently, there are 13 liposome-based drugs approved by US FDA and a great 

number are in various stages of clinical trials.12 

Dibucaine (DBC) is an amino-amide LA of high potency. It is mainly used as a topical active agent, in 

haemorrhoid creams and ointments. In order to achieve higher DBC encapsulation in liposomes, we have used 

the remote-loading technique. In this approach, a weak base such as DBC, is actively entrapped into the liquid 

core of preformed ionic-gradient liposomes.13 Some examples of the successful application of the remote-loading 

technique are the commercial liposomal products Doxil, Myocet, and DaunoXome. Notably, Doxil was the first 

liposomal drug approved by the FDA for infiltrative cancer treatment in 1995.14 

In the remote-loading technique, liposomes exhibit a transmembrane pH gradient: the internal vesicle 

solution is acidic, while the external solution is kept at pH 7.4. The drug is added to the external liposomal 

medium. Neutral molecules are able to diffuse from this medium into the liposomes, where they become 

protonated and subsequently trapped as only the uncharged form is membrane permeable.15 An ionic gradient 

can be created using a low-pH buffer (pH 5.5) or ammonium sulphate in the inner aqueous core of the liposomes. 

In the latter, the ammonium ions in solution deprotonate to form ammonia (which crosses the membrane), while 

the protons that remain drive the weak-base uptake.16,17 Remote loading is one of the best approaches for 

achieving a high drug encapsulation into liposomes.13 It has also shown to be efficient for the sustained delivery of 

LA, including bupivacaine6 and ropivacaine.17,18 The sustained release of the anaesthetics limits their clearance, 

decreasing the risk of systemic toxicity,19,20 and prolonging their potency. The liposomal formulation of 
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bupivacaine (Exparel) in the market, is both the only and an expensive option for long-acting postoperative local 

anaesthetic treatment.21 The safety profile and efficacy of this product is still being established.22 Dibucaine is a 

potent local anaesthetic and it is more effective than bupivacaine or ropivacaine (for which IGL has been 

described). Therefore, a new formulation of long-acting DBC is an interesting proposal for post-surgical pain 

management.  

In the present work, we describe the development and characterisation of a remote-loaded dibucaine 

liposome formulation, proposed as a potential long-acting DDS for the treatment of postsurgical pain. In vitro and 

in vivo toxicity tests suggest that it is non-toxic and safe to use. Antinociceptive tests revealed a remarkable 

increase in anaesthesia time (longer than a day), accomplished with this unique infiltrative formulation for 

dibucaine. 

 
 

MATERIALS AND METHODS 

Hydrogenated soy phosphatidylcholine (HSPC) was purchased from Avanti Lipids Inc. (Alabaster, AL, 

USA). Cholesterol, HEPES, sodium acetate, and uranyl acetate were purchased from Sigma Chem. Co. (St. 

Louis, MO, USA). Dialysis tubing membrane 12000-1400KDA MWCO was purchased from Spectrum (Los 

Angeles, CA, USA). Ammonium sulphate was acquired from Merck (São Paulo, SP, Brazil) and dibucaine 

hydrochloride was kindly donated by Althaia Ltda (Atibaia, SP, Brazil). 

 

Preparation of liposome formulations 

Liposomes composed of HSPC and cholesterol (2:1 mol%) were produced at a final lipid concentration of 

5 mM. The lipids in chloroform solution were dried to form a thin lipid film. Then, the film was hydrated with either 

50 mM HEPES buffer (pH 7.4), 50 mM acetate buffer (pH 5.5) or 300 mM (NH4)2SO4. The formulations were 

stirred for 10 min and extruded through polycarbonate membranes (400 nm) to produce large unilamellar vesicles 

(LUV). The external medium was replaced by 50 mM HEPES buffer (pH 7.4), after phase separation 

(centrifugation at 130,000 × g, for 2 h, at 4 °C). Then, DBC (320 µM) was actively loaded into the vesicles, at 

room temperature.16,17 

 

Liposome characterisation 
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The stability of the formulations was investigated by measuring the vesicle size and concentration, 

polydispersity index (PDI), and zeta potential (ZP) during 6 months of storage at 4 °C. Size, PDI and ZP were 

determined in a Zetasizer Nano ZS90 (Malvern, Worcestershire, UK) dynamic light scattering (DLS) analyser. The 

samples were diluted in deionised water and measured three times at 25 °C. 

Measurements of particle size and concentration were also carried out in nanoparticle tracking analysis 

(NTA) equipment (NanoSight NS300, Malvern, Worcestershire, UK) equipped with a sample chamber and a 532 

nm (green) laser. The samples were diluted in deionised water and measured three times, for 60 s. The 

temperature was kept constant at 25 °C during the e xperiment. 

 

Encapsulation efficiency 

The encapsulation efficiency (EE%) of dibucaine was determined by the ultrafiltration/centrifugation 

method, using a 10 kDa regenerated cellulose ultrafiltration device (Millipore Corp., Billerica, MA, USA). The 

liposome samples in the device were centrifuged at 12 °C, for 20 min at 4,100 × g. DBC quantification in the 

filtrate was determined by HPLC, in a ProStar 410 (Varian, Palo Alto, CA, USA) at 241 nm and 35 °C, us ing a 

C18-reversed-phase column (125 mm × 4 mm), 30 µL injection volume, acetonitrile:triethylamine phosphate 

buffer (55:45 v/v) mobile phase and 1.0 mL/min flow rate.23 The encapsulation efficiency was calculated according 

to equation 1: 

%EE = (1-Druguntrapped/Drugtotal) × 100              (1) 

 

In vitro dibucaine release from the liposomes 

The in vitro release of DBC (free or encapsulated in liposomes) was performed on Franz diffusion cells 

using a dialysis membrane (SpectraPor 12000–14000 Da MWCO). 400 µL of DBC (320 µM, in solution or 

encapsulated in the liposome formulations) was applied to the donor compartment, which was separated from the 

receptor compartment by a dialysis membrane. The receptor medium, containing 4 mL of HEPES buffer (pH 7.4) 

was kept at 37 °C and stirred at 300 rpm. Each test  was run for 24 h and samples (300 µL) from each cell (n = 6) 

were withdrawn at 0.25, 0.5, 1, 2, 3, 4, 5, 7, 9 and 24 h. Each withdrawn sample was immediately replaced with 

the same volume (300 µL) of buffer that was reintroduced into the receptor chamber. The KinetDS v3 software 

was applied to process the whole dataset using different theoretical release models. The determination coefficient 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

- 6 - 

(r2) was used to define the best-fit model, expressed as squared Pearson's correlation coefficient. In particular, 

the Weibull model followed equation 2: 

                                       

                                              (2) 

Where: m is the amount of drug released, a is the time constant, and b the shape parameter.24  

 

Cell viability test 

The in vitro cytotoxicity of DBC (in solution or encapsulated into the liposomes) was measured using the 

methyl thiazolyl tetrazolium (MTT) assay, in cultures of BALB/c 3T3 cells. The fibroblasts, at a density of 1x104 

cells/mL, were seeded in 96-well culture plates and incubated for 24 h at 37 °C and 5% CO 2. The RPMI culture 

medium was then removed and replaced with 100 µL of fresh medium containing different concentrations of the 

samples (liposomes, dibucaine or liposomal dibucaine). Untreated cells were used as controls. After the exposure 

period (2 h), the medium was removed and the plate was washed with phosphate-buffered saline (pH 7.4). The 

medium (100 µL, without serum) with 0.5 mg/mL of MTT reagent was added to each well and incubated for 3 h at 

37 °C. The MTT solution was discarded from each wel l and 100 µL of ethanol was added to dissolve the 

formazan crystals. The formazan absorbance was measured at 570 nm. Results were expressed as the mean 

viability percentage ± standard error means (SEM). Experiments were performed in triplicate. 

 

Bioassays 

Male Swiss mice (30–35 g) were obtained from CEMIB-UNICAMP (Centro de Bioterismo, University of 

Campinas, UNICAMP, Brazil) and housed in standard cages under a 12/12 h light/dark cycle. All experiments 

were approved by Institutional Animal Care and Use Committee (protocol # 2991-1). 

Wild-type adult zebrafish (8–12 months old) were kept in a glass aquarium filled with filtered tap water at 

28 ± 1 °C under a 14/10 h light/dark cycle, in acco rdance with the OECD (Fish Embryo Acute Toxicity, FET Test 

236, 2013). At one day post fertilisation (1 dpf), the fertilised eggs were transferred into 96-well plates (1 embryo 

per well) and conditioned in E3 medium (NaCl 0.29 g/L, KCl 0.012 g/L, CaCl2 0.036 g/L and MgSO4 0.039 g/L in 
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deionised water, and 50 ppb methylene blue to inhibit fungal growth). The Institutional Animal Care Committee of 

the Universidad Nacional de Quilmes (Buenos Aires, Argentina) approved the protocol (CE-UNQ 2/2014). 

 

In vivo toxicity tests in zebrafish 

The toxicity of the ionic-gradient liposomal DBC formulation was evaluated using zebrafish (Danio rerio) 

larvae, as an in vivo model. At 5 days after fertilisation (dpf), larvae were treated with sublethal doses of free DBC 

and liposome formulation (with or without DBC) for the following tests (Figure 1). Untreated larvae were used as 

controls. 

 

 

Anaesthesia evaluation in zebrafish larvae 

The anaesthetic effect caused by an acute dibucaine dose was evaluated in 5 dpf zebrafish larvae. The 

experimental animals (n = 24) were exposed to 32 µM DBC (free or encapsulated in the ionic-gradient liposomes) 

for 2 h. Then, the medium was replaced with fresh E3 medium and the post-anaesthetic recovery period was 

monitored with a Leica Zoom 2000 (Wetzlar, Germany) microscope, for the first 10 h, and after 24 h e 48 h. The 

anaesthetic effect was tested by applying a slight pressure to the body of the larvae with the help of a needle (BD 

21G, 0.8 mm). The larvae were considered anesthetised when they did not react to the pressure or attempt to 

swim away. 

 

Cardiotoxicity test 

After 48 h of treatment, the heart rate of zebrafish was determined (at 7 dpf larvae). Control and 

experimental larvae were individually recorded for 15 seconds, with a trinocular microscope (SMZ800, Nikon, 

Tokyo, Japan). Heartbeats were manually counted to determine the mean heart rate, which was then expressed 

as a percentage relative to the heart rate of the control (non-treated larvae). Experiments were performed on eight 

larvae per group (n = 8).25 

 

Zebrafish motor behaviour 

To evaluate the effect of increasing DBC concentration on zebrafish locomotor activity, the larvae were 

recorded for 15 min at 4 h, 24 h, and 48 h post treatment (hpt) with dibucaine (free or in the liposome formulation). 
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The recording system used was an infrared device that detects light refraction through the zebrafish body. A 

transient fluctuation in the signal was generated when larvae moved across the light beam. The outputs of the 

light signals were digitised by a multi channel ADC system (WMicrotracker; Design plus SRL, Buenos Aires, 

Argentina) and processed by dedicated software programmed in MS-Visual Basic. Motor activity was calculated 

as the sum of the activity events during 15 min, relative to the control. Experiments were performed three times, 

on eight larvae per group (n = 24). 

 

Morphological changes in different organs 

Images of 7 dpf larvae were captured using a trinocular microscope (Nikon SMZ800/Microsoft Camera). 

The assay employed to record morphological anomalies, used the numerical score system proposed by Panzica-

Kelly and colleagues,26  with modifications: 5 (structure is entirely normal), 4 (structure is within the normal range), 

3 (mild anomaly), 2 (moderate anomaly), and 1 (severe anomaly). Feature analysis included tail, heart, face, 

brain, and jaw. Morphological changes were calculated as the sum of the score for each feature, normalised to 

the control (n = 8). 

 

Anaesthesia evaluation in mice: tail flick test 

The tail-flick test was conducted to evaluate the duration of analgesia in mice exposed to a focused 

thermal stimulus (55 ± 1 °C, 150 W). 27 First, the mice were gently placed in an acrylic restraint chamber with an 

opening, to allow the tail to protrude. After which, the tail was exposed to heat from a light beam, and the time (in 

seconds) until the tail flicks (latency time) was recorded. A 15-second cut-off period was adopted, to avoid thermal 

injury. On the day before the injection, baseline testing was performed. Then, 40 µL of the sample containing 320 

µM DBC (free or in liposome formulation) was injected into the root of the mouse-tail. The test was performed 15, 

30, and 45 min after injection, as well as every 2 h, for as long as the sensory block (latency > baseline) was 

registered. The same observer performed all the experiments. Data were expressed as the percentage of 

maximum possible effect (%MPE), duration of the analgesic effect (min), and area under the effect curve (AUEC) 

for each experimental group. % MPE was calculated according to equation 3. AUEC values were calculated by 

the integral, in a plot of drug effect vs. time, starting from the first time value in the data set and ending at the last 

time value. 
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                            (3) 

Statistical analysis 

The data were analysed using GraphPad Prism v6.01 (Northampton, MA, USA). The Student’s t-test was 

used to evaluate statistical significant differences in the particle size, PDI, and zeta potential data of the liposome 

formulations (with vs. without DBC; or at initial vs. time) during the stability studies. One-way ANOVA with the 

post-hoc Tukey multiple comparison test was used to analyse the data from the encapsulation efficiency, cell 

viability and tail-flick tests. The in vivo toxicity tests were analysed by one-way ANOVA, followed by Dunnett’s 

post-test. Statistical significance was defined as p < 0.05. 

 

Results and discussion 

 
Liposome characterisation 

Appropriate size characterisation of a nanostructured DDS is an important safety assessment in the 

development of a novel parenteral formulation.28 Two powerful techniques, DLS and NTA, were performed to 

obtain such information (Table 1, Figure 2). The initial physicochemical characterisation by DLS revealed 

liposomes sizes were in the region of 380 nm (Table 1). Also in table 1, NTA results are shown as the size 

distribution width (D90, D50, and D10) calculated by the cumulative size distribution, plus nanoparticles 

concentration. 

Comparing the DLS and NTA size distributions it becomes evident that the results are quite similar for the 

formulations with monodisperse size distribution, such as that of LUV 7.4 (PDI ≤ 0.2, see Figure 2A). However, in 

the case of polydisperse size distributions, as observed for the pH-gradient formulation and sulphate-gradient 

formulation (Figure 2B–C), the results obtained from both techniques were significantly different. This is because 

DLS measurements consider the intensity of the light scattered by all particles, at the same time. Therefore, the 

presence of a small number of large particles, which scatter light more intensely than the small particles, might 

lead to the average size being biased towards the larger particles.29 On the other hand, NTA follows particle-by-

particle (individual) movements, avoiding the bias described for DLS; this also explains why NTA mean diameters 
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were always smaller than those measured by DLS. In addition, the incorporation of DBC significantly increased 

the size of the ionic-gradient liposomes (LUV 5.5 and LUV AS), but not that of the conventional liposomes (LUV 

7.4), as confirmed by both (DLS and NTA) techniques. 

 DLS measurements were also used to follow the stability of the formulations, as shown in Figure 2. 

During six months of storage, all the formulations presented some statistical differences in size and PDI over time 

but, there were no instances where the mean size exceeded 455.6 nm (Fig. 2 A-C), and thus are suitable for 

infiltrative anaesthesia use.30  

Figure 2D also shows that DBC upload significantly decreased the absolute (negative) zeta potential 

values of the conventional liposomes (LUVDBC7.4) during the 180 days of storage. Changes in zeta potential 

indicate that DBC partitions into the liposome bilayer, staying at the surface of the liposomes as also reported by 

Kuroda and colleagues,31 hence being able to affect the surface electric potential of the nanoparticles, They used 

1H-NMR to demonstrate that DBC was superficially inserted in-between the lipids, at the polar head group region 

of egg phosphatidylcholine liposomes. Such an effect was not so evident for the gradient liposomes (LUVDBC5.5 

and LUVDBCAS), in which absolute zeta values were smaller (closer to zero), indicating inferior physical stability 

for those nanoparticles. Despite of that, no significant pH changes (7.41 ± 0.05) were observed during the storage 

of any of the tested formulations (data not shown). 

 The differences in Zeta values also help to explain the different fluctuations in size and PDI of the 

liposomes. After 180 days of storage, the average zeta potential of LUVDBC5.5 (in module) was significantly 

smaller  (-5 mV) than that of LUVDBCAS (-10 mV) or LUVDBC7.4 (-20 mV), as shown in Fig. 2D. Therefore, in the 

first (pH gradient formulation), the repulsive forces between the vesicles are weaker and some aggregation may 

have happened, increasing the average size of the particles. This is more evident during the storage, when 

LUVDBC5.5 has shown the larger fluctuations in size, PDI and Zeta (Fig. 2). 

The stability tests were also performed using NTA, which contributed with another parameter, not so 

commonly used, but of maximum importance in the characterisation of DDS,32 namely particle concentration, as 

shown in Table 1 and Figure S1 (Supplementary Material). The number of particles, in the range of 1–6 × 1012 

liposomes/mL, did not vary significantly during storage, in agreement with the discrete particle size changes 

observed (Fig. S1). For instance, if the liposomes were unstable and underwent fusion over time, the number of 

particles would decrease, while the average size would increase. Moreover, the measured number of tracked 

particles is also compatible with the number of liposomes (3 × 1012 liposomes/mL) expected for a 5 mM 
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suspension of 190 nm vesicles (as calculated from the LUV bilayers’ surface area, divided by the area/lipid − 5.5 

Å2).18,33 

 

Encapsulation efficiency 

The remote-loading technique was used as a strategy to entrap suitable amounts of DBC inside of the 

liposomes. We created two types of ionic gradients (pH and ammonia-driven) that made the inner liposome 

aqueous core acidic, while the external pH was kept at pH 7.4. Table 1 shows that among the formulations tested, 

the highest DBC encapsulation efficiency (%EE = 62.6 ± 4.3) was attained with sulphate-containing LUV 

formulation (LUVDBCAS), followed by pH gradient liposomes (LUVDBC5.5, %EE = 31.0 ± 4.3) and conventional 

liposomes (LUVDBC7.4, %EE = 27.9 ± 0.9). The %EE of LUVDBCAS was significantly (p < 0.001) higher than any 

other tested formulation. According to Barenholz, ammonium sulphate dissociates inside of the vesicles, and NH3 

ions permeate out of the vesicles, leaving the protons (H+) inside, which keeps the acidification and thus the 

loading cycle.34 Moreover, the sulphate counter-ion may complex with the weak base (DBC) to stabilise it inside 

the vesicles.35 Such “extra” driving force (of the transmembrane ionic gradient) worked well for DBC upload in the 

sulphate-containing formulation. The low %EE of conventional liposomes was expected, since the DBC upload 

depends only on the drug locating in the lipid bilayer, while in the remote-loading technique the drug is actively 

loaded into the vesicles, in response to a pH/ion transmembrane gradient. However, the pH gradient formulation 

(LUVDBC5.5) presented similar %EE of conventional liposomes, showing that the proton driving force (which is 80 

times greater inside the liposomes (pH 5.5) than at the external medium (pH 7.4) was not enough to guarantee a 

satisfactory DBC encapsulation. 

To demonstrate the advantage of the ionic-gradient liposomes, we calculated the trapped volume of the 

LUVDBCAS formulation: 11 µL/µmol lipid (considering 380 nm vesicles and 5 mM total lipid). Such a value 

represents the total volume inside the gradient liposomes, and corresponds to ca. 6% of the total aqueous volume 

of the formulation.36 Thus, the total DBC carried by the gradient liposomes corresponds to the liposomal bilayer-

partitioned fraction, plus the charged DBC molecules trapped in the liposome volume. 

In a liposome formulation, the amount of drug uploaded into the vesicles is directly correlated with the 

enhanced therapeutic efficacy achieved.37 However, for local anaesthetics the maintenance of a fraction of non-

entrapped drug is also advantageous, because the free LA will guarantee the fast onset of analgesia. For 
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example, in the LUVDBCAS formulation, one third of the DBC remains free in solution to shorten the onset of 

action, while the encapsulated fraction (%EE = 62.6) can prolong the effect of anaesthesia. 

 

In vitro dibucaine release from the liposomes 

The in vitro DBC leakage from the liposomes was carried out under small dilution, simulating an infiltrative 

anaesthesia. Even though the in vitro/in vivo correlation is always difficult to prove, this experiment helped to 

assess the drug-release profile. The cumulative release of DBC (free and encapsulated in the liposome 

formulations) as a function of time is shown in Figure 3. The release of the control (free DBC) was completed in 

ca. 3 h, confirming the experiment was conducted under sink condition. The release profiles of DBC from the 

liposomes were treated with different mathematic models, being better described by the Weibull equation (eq. 2), 

as shown in Table 2. The curves were expressed by the negative b value, representing a parabolic curve with a 

steep initial slope followed by an exponential decay,38 corresponding to the Fick diffusion and sustained release 

from the liposomes, respectively. The LUVDBCAS formulation displayed the highest b-value (in module) among the 

liposome formulations, characterising the longest sustained release profile (50% ≅ 7 h). These results agree well 

with the higher %EE of the sulphate-containing formulation, while conventional (LUVDBC7.4) and pH gradient 

liposomes (LUVDBC5.5), of equivalent encapsulation, showed similar release profiles (50% ≅ 2 h). Probably, the 

DBC entrapped inside the LUVDBCAS contributed greatly to sustainable release profile. A prolong LA release is 

desirable to improve potency of anaesthesia. 7 Also; the full amount of drug is not released immediately upon 

injection which can reduces the risk of systemic toxicity.   

 

Cell viability test 

The cell viability of 3T3 cells treated with the DBC-loaded liposomes was tested in vitro, using the MTT 

assay. Figure 4 shows that the gradient liposomes (LUV AS and LUV 5.5) and LUV 7.4 without DBC, even at high 

nanoparticles concentration (~2.1012 liposomes/mL), do not significantly reduce cell viability when compared to 

the controls (non-treated cells). 

The MTT cell viability assay was also performed for free DBC and the cytotoxic effect of the anaesthetic 

was found to be dose-dependent (Figure 4). The 300 µM DBC dose led to a decrease in cell viability to 60.1 ± 

2.4%. 
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All the liposome dibucaine formulations (LUVDBC7.4, LUVDBC5.5, and LUVDBCAS) were found to be 

significantly less cytotoxic than free DBC, at equivalent concentrations. The toxic effect of local anaesthetics is 

well known39 and encapsulation in conventional40 or ionic-gradient liposomes17 has been shown to reduce such 

intrinsic toxicity. 

 

In vivo toxicity tests in zebrafish larvae 

Since LUVDBCAS was found the most promising formulation, based on the encapsulation efficiency and 

sustained release results, it was selected for further in vivo toxicity studies using the zebrafish model. 

Zebrafish is a versatile vertebrate model organism that shows 70% genetic homology with humans, 

besides many physiological similarities to mammals.41 Additionally, many advantages make the zebrafish an 

interesting intermediate model between in vitro  (cytotoxicity) and in vivo studies in mammals.42 This experimental 

design follows the so called “3Rs” (reduce, refine and replace) principle for investigations with animals.43 Further, 

the zebrafish is increasingly used in nanoparticle toxicity studies because it allows the rapid evaluation of multiple 

biological parameters.44,45 According to He and colleagues,46 numerous studies have confirmed that the toxicity 

profiles of zebrafish (Danio rerio) and mammals are extremely comparable. Therefore, in vivo toxicity tests were 

carried out with zebrafish larvae for LUVDBCAS and free DBC. 

 

Anaesthesia evaluation in zebrafish larvae 

We initially tested to see if the zebrafish larvae were sensitive to the anaesthetic effect. The larvae were 

incubated for 2 h with an acute dose (32 µM) of DBC. Two hours after treatment with DBC or LUVDBCAS, all 

larvae were unable to move away from mechanical stimulus. This behaviour may be explained by the 

neuromuscular blocking effects the anaesthetic.47 Most of the larvae treated with free DBC (93%) recovered from 

anaesthesia within 9 h (Figure 5A). However, only 58% of larvae treated with LUVDBCAS reacted to stimulus, at 9 

hpt. After 48 h (data not shown), some larvae (21%) from the ionic-gradient liposome formulation were still numb. 

These results provide evidence that zebrafish are sensitive upon exposure to DBC. Moreover, the prolonged 

anaesthetic effect achieved with the LUVDBCAS formulation supported our hypothesis. Therefore, zebrafish larvae 

were considered to be a suitable model for further toxicity studies. No mortality was observed during the test. 

 

Cardiotoxicity test 
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Local anaesthetics bind to voltage-gated sodium channels and prevent pain by blocking the initiation and 

propagation of the action potential in sensory nerves and other excitable cells.48 Thus, the administration of LA 

may lead to systemic toxicity to cardiovascular and central nervous systems.49  

In the first days after fertilisation, zebrafish have already developed a heart with two cavities and a 

vascular system.50 Here, we tested the cardiotoxicity effects of the long-term exposure to DBC on a 7 dpf larvae. 

As expected, free DBC decreases the heart rate compared to the control (untreated larvae), in doses higher than 

2 µM (Figure 5B). The treatment with LUVDBCAS did not significantly decrease the heart rate of the larvae, at any 

DBC dose tested. This result demonstrates that sulphate-gradient liposomes reduced DBC cardiotoxicity in 

zebrafish larvae. Such an effect can probably be explained by the slow release of DBC from the liposomes, 

attenuating its toxic effect. The use of zebrafish to assess the cardiotoxicity of active compounds is not a new 

concept. Milan and co-workers evaluated the effect of a hundred drugs on the heart rate of zebrafish. They found 

that all the compounds that induced QT interval prolongation in humans were also found to cause bradycardia 

and/or atrioventricular block in zebrafish larvae.51 

 

 

Zebrafish motor behaviour 

This test evaluated the behavioural effects of DBC on spontaneous swimming of zebrafish larvae at 4, 24 

and 48 hpt. Figure 6A shows that at lower DBC doses (0.5 to 2 µM) free DBC and LUVDBCAS did not significantly 

change larvae spontaneous movement (expressed as a percentage, relative to the control: untreated larvae). 

Larvae treated with 4 µM DBC presented hypoactivity at 4 hpt, but at 24 hpt and 48 hpt they showed hyperactive 

behaviour. This change of motor activity was not evident for LUVDBCAS at 24 and 48 hpt. However, for larvae 

exposed to 8 µM DBC (free and encapsulated) only hypoactive behaviour was observed at 4 and 24 hpt52 studied 

the locomotor behaviour of larvae exposed to cocaine (5–50 µM). Surprisingly, only the hypoactive response was 

observed, in a dose-dependent manner. Those authors proposed that cocaine, as a local anaesthetic, first passes 

through the gills and skin and then blocks the peripheral nerves, suppressing locomotor activity. Here the 

treatment with 0.5–4 µM DBC did not cause deep anaesthesia, since the larvae were able to react to mechanical 

stimulus (data not shown). Therefore, any change in behaviour caused by DBC with the 0.5–4 µM doses can be 

related to DBC neurotoxicity, and LUVDBCAS seemed to attenuate it. It is probable, that the hypoactive behaviour 
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presented by the larvae treated with 8 µM DBC (free or liposomal) was caused by neurotoxicity, but also by the 

peripheral anaesthetic effect. 

  

Morphological changes 

The observation of zebrafish malformations is widely used to perform developmental toxicity screening of 

compounds and nanoparticles.44,53 The larval transparency of zebrafish allows a direct evaluation of the toxicity.46 

In order to evaluate the LA toxicity, most of the cardiac and nervous system of the fish must be developed, which 

occurs in less than a week for zebrafish embryos.54 

The morphological changes after DBC treatment are represented in Figure 6B. DBC treatment caused 

evident abnormalities in the heart, brain, and jaw. In a similar way, other authors found abnormities relating to the 

central nervous system, when larvae were treated with the antipsychotic25 (risperidone) and antiepileptic55 

(valproic acid) drugs. An example of the abnormities is shown in Figure S2 B (Supplementary Material). 

LUVDBCAS significantly attenuated DBC-induced morphological changes, as shown in Figure S2 C. These data 

are in agreement with the cardiotoxicity results, showing that the sulphate liposome formulation reduces the DBC 

toxic effect. 

 

Analgesia tests in mice (tail-flick) 

Adequate postsurgical pain management is critical for patient rehabilitation1. The infiltrative administration 

of local anaesthetics into the surgical site can achieve temporary analgesia, but bupivacaine and other long-acting 

agents provide no more than 7 hours of anaesthesia. To evaluate the extent of the analgesic effects of DBC, free 

and encapsulated into different liposome formulations, we performed the tail-flick test in male mice (Table 3). The 

sensory block duration induced by 320 µM of free DBC (11 h) was similar to the drug half-life time in rats.56 

LUVDBC5.5 and LUVDBC7.4 provided 13 h and 15 h of blockade, respectively. In addition, the AUEC values were 

significantly lower than that obtained with LUVDBCAS. In fact, as long as 27 h of analgesia was registered with 

LUVDBCAS, an outstanding result that corroborates the high %EE and prolonged in vitro release achieved with this 

formulation. LUVDBCAS demonstrated that it can act as a repository, staying at the site of injection long enough to 

prolong the DBC effect. Therefore, a single dose of LUVDBCAS formulation may provide long-term analgesia and a 

reduction in opioid demand in the postsurgical period. 
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Conclusions 

Effective pain management after surgical procedures using long-acting local anaesthetics may reduce 

patient stress and opioid consumption. Dibucaine is a local anaesthetic which use is restricted to topical 

administration. Here we reported the successful development of novel liposome formulation (LUVDBCAS) for the 

sustained release of dibucaine. The liposomes prepared with an ammonium sulphate gradient showed a higher 

encapsulation efficiency (2.3 times) than conventional liposomes. The prolonged analgesia time (27 h), displayed 

after infiltrative injection of the formulation (containing 320 µM DBC (or 0.012%) in mice, was in good agreement 

with the release profile determined at 37 °C (24 h) . Both in vitro (3T3 cells in culture) and in vivo (zebrafish model) 

toxicity tests showed that encapsulation diminished the intrinsic toxicity of DBC. The zebrafish model was 

especially useful for evaluating both the local and systemic toxicities (as indicated by morphological changes, 

spontaneous movement and heartbeat rates) of the anaesthetic. It should be highlighted that the cardiotoxicity of 

DBC was markedly attenuated with the use of the LUVDBCAS formulation. We propose the use of this ionic-

gradient-based liposome formulation for the sustained release of dibucaine, providing long-term local anaesthesia 

with a single-dose infiltration, especially of interest during the postoperative surgical period. 
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FIGURE CAPTIONS 

 

Figure 1: Timeline of in vivo toxicity experiments during zebrafish development. Numbers represent the day post 

fertilization (dpf) of larvae. Larvae were treated at 5 dpf with free DBC or with the liposome formulation (with or 

without DBC). The motor behavior test was performed after 4h, 24h and 48 h post treatment (hpt). Heart rate 

changes and morphological tests were performed at 7 dpf, after 48 hpt. 

 

Figure 2: Characterization of different liposomal DBC formulations during six months of storage at 4 °C, as 

measured by DLS. Average size (bars) and PDI (gray lines) of: (A) LUV 7.4 and LUVDBC7.4; (B) LUV 5.5 and 

LUVDBC5.5; (C) LUV AS  and LUVDBCAS. In (D): Zeta potential values measured for all formulations. Statistical 

Student´s t Test (paired) was applied to compare liposome formulations at initial (0 day) vs. time (*p<0.05).  

 

Figure 3:  Cumulative drug release of DBC from liposomal formulations and free DBC (in solution), at pH 7.4 and 

37 oC. Results were expressed as the mean ± SD (n=6). 

 

Figure 4: Cell viability of BALB/c 3T3 fibroblasts treated with liposomes and DBC (free or encapsulated in 

liposomes), for 2 hours, as measured by the MTT assay. Results are expressed as the mean ± SEM (n=3). 

Statistical analysis was performed by One-way ANOVA and Tukey post-hoc test. Statistical significance: *p<0.03, 

**p<0.01, ***p< 0.0005 and ****p<0.0001, for liposomal formulations vs. free DBC at the same concentration. 

 

 

Figure 5: A) Percentage of larvae recovery from anesthesia after 2-hour treatment with 32 µM DBC (free and 

encapsulated in LUVDBCAS. hpt = hours post treatment. (n= 24). B) Heart beats rates of zebrafish larvae treated 

with liposome (with or without DBC) formulations or free DBC (n=8). Data was recorded 48 hours post treatment. 

Non-treated larvae were used as control. Results are expressed as the mean ± SEM. Statistical analysis was 

performed by 1-way-ANOVA/Dunnett with significance of *p<0.05; **p<0.01, ***p< 0.001 and ****p<0.0001, 

compared to the control.  
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Figure 6: A) Percentage of spontaneous movement of zebrafish larvae treated with dibucaine (free or 

encapsulated in LUVDBCAS) for 4, 24 and 48 (n = 24). Statistical analysis was performed by One-way 

ANOVA/Dunnett with significance of *p<0.05; **p<0.01, ***p< 0.001 and ****p<0.0001, compared to the control 

(non-treated larvae). B) Percentage of morphological changes after treatment with 8 µM of DBC (free or 

encapsulated in LUVDBCAS), in respect to the control for: tail, heart, face, brain, and jaw of the zebrafish larvae. 

Results were expressed as the mean ± SEM. Statistical analysis was performed by One-way ANOVA/Dunnett 

with significance of *p<0.05; **p<0.01, ***p< 0.001 and ****p<0.0001, compared to the control (non-treated 

larvae).  

 
 

    
Figure captions - Supplementary material 

 

Figure S1: Characterization of liposome DBC formulations over time (180 days of storage at 4 °C), as m easured 

by nanotracking analysis. Nanoparticles size (bars) and concentration (gray lines) for: A) LUV 7.4 and LUVDBC7.4; 

B) LUV 5.5 and LUVDBC5.5; C) LUV AS and LUVDBCAS.  

 
 

 

Figure S2: Lateral view of 7dpf larvae treated for 48 hours with A: control; B: DBC 8 µM; C: LUVDBCAS 8 µM; D: 

LUV AS. Details observed in A: Lateral view of normal LJ (lower jaw); FB (forebrain); MB (midbrain); HB 

(hindbrain); H (heart); OC (otic capsule). B: Representative score assignment of heart (Score 2) - atrium and 

ventricle chambers are severely enlarged (circle), misshaped, and not well defined. Face (Score 2) - increased 

space between the midbrain and otic capsule (dotted), small and not well-defined olfactory region. Brain (Score 2) 

- irregular forebrain and midbrain shapes without well-defined brain portion junctions (arrows). Jaw (Score 2) 

irregular shaped lower (line) and upper jaw. C: Heart (Score 4) - normal heart morphology with a slightly smaller 

ventricle (arrow). Brain (Score 4) - slightly smaller forebrain region (line). D: tail is slightly curved (arrow). The 

assay is based on morphological anomalies using the numerical score system proposed by Panzica-Kelly and 

coworkers. 26. 
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Table 1. Dibucaine encapsulation efficiency (%EE) and size distribution (mean ± SD) of liposome 

formulations (with and without dibucaine), as measured by dynamic light scattering (DLS) and 

nanoparticle tracking analysis (NTA) in freshly prepared samples.  

Statistics (n = 3) - unpaired Student´s test; comparison between each liposome formulation, with vs. 
without DBC (*p<0.05). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formulation DLS   NTA (nm)  Number of 
particles 

 (x1012/mL) 

EE  

 (nm)  D90 D50 D10 (%) 

LUV 7.4 345 ± 5 308 ± 17 179 ± 7 107 ± 3 1.9 ± 0.2 - 

LUVDBC7.4 352 ± 3 292 ± 24 164 ± 8   98 ± 6 2.2 ± 0.1 27.9 ± 0.9 

LUV 5.5 386 ± 6 210 ± 7 141 ± 6   82 ± 1 1.5 ± 0.2 - 

LUVDBC5.5 438 ± 5* 305 ± 13* 165 ± 10* 100 ± 4* 2.2 ± 0.1 31.0 ± 4.3 

LUV AS 374 ± 11 273 ± 5 162 ± 6   99 ± 3 3.3 ± 0.1 - 

LUVDBCAS 412 ± 18* 331 ± 6* 186 ± 6* 104 ± 4 3.9 ± 0.2 62.6 ± 4.3 
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Table 2. Kinetic parameters measured for the release of dibucaine from liposome formulations, 

according to the Weibull treatment (see equation 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formulation  r2 a b 

 
LUVDBC7.4 0.914 1.32 - 6.31 

LUVDBC5.5 0.944 1.11 - 5.59 

LUVDBCAS 0.990 1.04 - 6.48 
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Table 3. Area under the curve (AUC) of sensorial blockade on the mice tail induced by DBC (320 µM) 

in solution or encapsulated into liposomes (n=7).  

Statistics: ANOVA/Tukey (p<0.001)***. a. free DBC vs LUVDBCAS; b. LUV DBC7.4 vs LUVDBCAS; c. LUV 
5.5 vs LUV AS. 

 

Formulation  AUC  (mean ± SD)  Duration of analgesia (h)  

free DBC   769.4 ±  61.6 11 

LUVDBC7.4     947.7 ± 113.0 15 

LUVDBC5.5   831.4 ±  78.2 13 

LUVDBCAS          1665.9 ± 112.5a,b,c*** 27 
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