513 research outputs found

    Multiple ionization of neon by soft X-rays at ultrahigh intensity

    Full text link
    At the free-electron laser FLASH, multiple ionization of neon atoms was quantitatively investigated at 93.0 eV and 90.5 eV photon energy. For ion charge states up to 6+, we compare the respective absolute photoionization yields with results from a minimal model and an elaborate description. Both approaches are based on rate equations and take into acccout a Gaussian spatial intensity distribution of the laser beam. From the comparison we conclude, that photoionization up to a charge of 5+ can be described by the minimal model. For higher charges, the experimental ionization yields systematically exceed the elaborate rate based prediction.Comment: 10 pages, 3 figure

    Evaluation of an entraining droplet activation parameterization using in situ cloud data

    Get PDF
    This study investigates the ability of a droplet activation parameterization (which considers the effects of entrainment and mixing) to reproduce observed cloud droplet number concentration (CDNC) in ambient clouds. Predictions of the parameterization are compared against cloud averages of CDNC from ambient cumulus and stratocumulus clouds sampled during CRYSTAL‐FACE (Key West, Florida, July 2002) and CSTRIPE (Monterey, California, July 2003), respectively. The entrainment parameters required by the parameterization are derived from the observed liquid water content profiles. For the cumulus clouds considered in the study, CDNC is overpredicted by 45% with the adiabatic parameterization. When entrainment is accounted for, the predicted CDNC agrees within 3.5%. Cloud‐averaged CDNC for stratocumulus clouds is well captured when entrainment is not considered. In all cases considered, the entraining parameterization compared favorably against a statistical correlation developed from observations to treat entrainment effects on droplet number. These results suggest that including entrainment effects in the calculation of CDNC, as presented here, could address important overprediction biases associated with using adiabatic CDNC to represent cloud‐scale average values

    Time-resolved investigation of nanometer scale deformations induced by a high flux x-ray beam

    Get PDF
    We present results of a time-resolved pump-probe experiment where a Si sample was exposed to an intense 15 keV beam and its surface monitored by measuring the wavefront deformation of a reflected optical laser probe beam. By reconstructing and back propagating the wavefront, the deformed surface can be retrieved for each time step. The dynamics of the heat bump, build-up and relaxation, is followed with a spatial resolution in the nanometer range. The results are interpreted taking into account results of finite element method simulations. Due to its robustness and simplicity this method should find further developments at new x-ray light sources (FEL) or be used to gain understanding on thermo-dynamical behavior of highly excited materials. (C) 2011 Optical Society of Americ

    Employer's management of employees affected by cancer

    Get PDF
    Return to work (RTW) following treatment can be problematic for cancer survivors. Although some people affected by cancer are able to continue working, a greater proportion of these survivors end up unemployed, retire early or change jobs than those without a diagnosis of cancer. One of the reasons for not returning to work is the lack of understanding and support from employers and supervisors. Currently, it is not clear what factors are likely to influence the employer’s management of employees recovering from cancer. This article reports the outcome from a review of the published literature on factors related to the current employer management of employed cancer survivors

    On the origin of elevated surface ozone concentrations at Izana Observatory, Tenerife during late March 1996

    Get PDF
    The origin of relatively high surface ozone concentrations measured at Izana Observatory (Canary Islands) during the end of March 1996 is studied using a coupled chemistry-GCM (ECHAM4) at T63 resolution (1.875° × 1.875°). Meteorological fields (geopotential height, potential vorticity, specific humidity), and a model-simulated stratospheric ozone tracer as well as 3-D back trajectories, show the stratospheric origin of these relatively high surface ozone values caused by cross-tropopause exchange at the western flank of an upper level trough/cut-off low (COL) over the extratropical North-Atlantic Ocean. The good agreement between observations and model results (within 10–15%) indicates that the high resolution chemistry-GCM is a useful tool towards the understanding of natural sources controlling background surface ozone variability. The results underscore the importance of stratosphere-troposphere exchange (STE) during late winter/early spring for lower free tropospheric ozone at subtropical latitudes

    Multiple Auger cycle photoionisation of manganese atoms by short soft x-ray pulses

    Get PDF
    The multiple ionisation of atomic Mn, excited at (photon energy: 52.1 eV) and above (photon energy: 61.1 eV) the discrete giant 3p–3d resonance, was studied using high irradiation free-electron-laser soft x-ray pulses from the BL2 beamline of FLASH, DESY, Hamburg. In particular, the impact of the giant resonance on the ionisation mechanism was investigated. Ion mass-over-charge spectra were obtained by means of ion time-of-flight spectrometry. For the two photon energies, the yield of the different ionic charge states Mnq+ (q = 0–7) was determined as a function of the irradiance of the soft x-ray pulses. The maximum charge state observed was Mn6+ for resonant excitation at 52.1 eV and Mn7+ for non-resonant excitation at 61.1 eV at a maximum irradiation of 3×10 13Wcm−2. .DFG, 170620586, SFB 925: Licht-induzierte Dynamik und Kontrolle korrelierter QuantensystemeBMBF, 05KS7GU2, Verbundprojekt: PIPE - Photon-Ion-Spektrometer an PETRA III. Teilprojekt 2: Entwicklung und Aufbau eines flexiblen Zwei-Strahl Experiments zur Erforschung elektrisch geladener, massenselektierter und zustandspräparierter Ionen (Atome, Cluster und Nanopartikel).BMBF, 05K10GUB, Verbundprojekt PIPE - Photon-Ion-Spektrometer an PETRA III: Photoion-, Photoelektron- und Fluoreszenz-Experimente mit massenselektierten Nanoteilchen. Teilprojekt 2: Ionenfalle und Hochfeldmagnet.BMBF, 05K13GUA, Verbundprojekt 05K2013 - IONSYS: Quellen und Nachweissysteme für innovative Untersuchungen zusammengesetzter ionischer Systeme mit Photonen. Teilprojekt 2.EC/H2020/654220/EU/European Cluster of Advanced Laser Light Sources/EUCAL

    Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere

    Get PDF
    Radiative forcing due to changes in ozone is expected for the 21st century. An assessment on changes in the tropospheric oxidative state through a model intercomparison ("OxComp'') was conducted for the IPCC Third Assessment Report (IPCC-TAR). OxComp estimated tropospheric changes in ozone and other oxidants during the 21st century based on the "SRES'' A2p emission scenario. In this study we analyze the results of 11 chemical transport models (CTMs) that participated in OxComp and use them as input for detailed radiative forcing calculations. We also address future ozone recovery in the lower stratosphere and its impact on radiative forcing by applying two models that calculate both tropospheric and stratospheric changes. The results of OxComp suggest an increase in global-mean tropospheric ozone between 11.4 and 20.5 DU for the 21st century, representing the model uncertainty range for the A2p scenario. As the A2p scenario constitutes the worst case proposed in IPCC-TAR we consider these results as an upper estimate. The radiative transfer model yields a positive radiative forcing ranging from 0.40 to 0.78 W m(-2) on a global and annual average. The lower stratosphere contributes an additional 7.5-9.3 DU to the calculated increase in the ozone column, increasing radiative forcing by 0.15-0.17 W m(-2). The modeled radiative forcing depends on the height distribution and geographical pattern of predicted ozone changes and shows a distinct seasonal variation. Despite the large variations between the 11 participating models, the calculated range for normalized radiative forcing is within 25%, indicating the ability to scale radiative forcing to global-mean ozone column change
    corecore