24 research outputs found

    Future Scenarios of Nitrogen in Europe

    Get PDF
    The future effects of nitrogen in the environment will depend on the extent of nitrogen use and the practical application techniques of nitrogen in a similar way as in the past. Projections and scenarios are appropriate tools for extrapolating current knowledge into thefuture. However,these tools will not allow future system turnovers to be predicted. Approaches• In principle, scenarios of nitrogen use follow the approaches currently used for air pollution,climate ,or ecosystem projections. Short term projections (to 2030) are developed using a ‘baseline’ path of development,which considers abatement options that are consistent with European policy. For medium-term projections (to 2050) and long-term projections, the European Nitrogen Assessment (ENA) applies a ‘storyline’ approach similar to that used in the IPCC SRES scenarios. Beyond 2050 in particular, such story lines also take into account technological and behavioral shift s.Key findings/state of knowledge• The ENA distinguishes between driver-oriented and effect-oriented factors determining nitrogen use. Parameters that cause changes in nitrogen fixation or application are called drivers. In a driver-based approach, it is assumed that any variation of these parameters will also trigger a change in nitrogen pollution. In an effect-based approach, as the adverse effects of nitrogen become evident inthe environment, introduction of nitrogen abatement legislation requiring the application of more efficient abatement measuresis expected. This approach needs to rely on a target that is likely to be maintained in the future (e.g.human health). Nitrogen abatement legislation basedon such targets will aim to counter any growth in adverse environmental effects that occur as a result of increased nitrogen application.• For combustionand industry, technical fixes forabatement are available. Allscenarios agree in projecting a decrease in NOx emissions.Yet agricultural nitrogen use is expected to remain the leading cause of nitrogen release to the environment, as options to reduce emissions are limited. Thus, major changes will occur only if the extent of agricultural production changes, which may possibly be triggered by decreasing population numbers in Europe.The scenarios presented here project modest changes in NH 3 and N 2 O emissions, or nitrateleaching, but do not agree on the direction of these changes.•Agricultural activity (and thus nitrogen loads to the environment) may decrease strongly if the European population adopts a healthier‘low meat’ diet leading to lower nitrogenlosses related to animal husbandry. Change to a ‘healthy diet’ across the EU, which consists of 63% less meat and eggs, would reduce ammonia emissions from animal production by 48%. However, if an agricultural area previously used for animal feed production is utilized for biofuel crops, additional nitrogen fertilizer maybe required, which will partially offset reductions of nitrogen leakage to the environment. Major uncertainties/challenges• International trade in nitrogen-containing goods (agricultural as well as industrial) represents a key uncertainty and is difficult to project. Estimating the demand for such goods for Europe alone may not at all reflect European production and related environmental effects. The industrial use of nitrogen is alsovery poorly understood, but it is expected to continue to grow considerably. The respective environmental impacts of such products cannot be clearly discerned from statistical information.Recommendations• Scenarios need to be continuously updated in terms of economic, technical, and societal trends to reflect improved understanding of these factors. Using nitrogen budgets as tools could improve the consistency of scenarios.JRC.DDG.H.2-Climate change and air qualit

    Раціональність як реляційність: синтетична єдність відмінностей в трансцендентальному просторі границі

    Get PDF
    У статті висвітлюються проблеми «постсучасної» раціональності, визначальною характеристикою котрої покладається іманентна пограничність. Відношення та Іншість розглядаються як визначальні предикати раціональності, які в класичній парадигмі імплікують принципи рефлексійності, конструктивності, співмірності. Корелятами означених принципів у постструктуралістській раціональності визначаються повторність (ітеративність), фрагментарність, подвоєння, розрізняння. Конгруентність класичної та постсучасної раціональності зумовлена еквівалентністю понять трансцендентальності та пограничності. Синтетична єдність (розбіжність та зв'язок) з її специфікацією принципами пов’язання та розрізняння, визначається через медіативну функцію судження, структура якого фундується параметрами реляційності.В статье освещаются проблемы «постсовременной» рациональности, определяющей характеристикой которой полагается имманентная пограничность. Отношение и Другость рассматриваются как определяющие предикаты рациональности, которые имплицируют принципы рефлексивности, конструктивности, соразмерности в классической парадигме. Коррелятами обозначенных принципов в постструктуралистской рациональности являются повторность (итеративность), фрагментарность, удвоение, различание. Конгруэнтность классической и постсоврменной рациональности обусловлена эквивалентностью понятий трансцендентальности и пограничности. Синтетическое единств (различие и связь) с его спецификацией в позициях увязывания и различания, определяется через медиативную функцию суждения, структура которого фундируется параметрами реляционности.The paper illuminates some problems of the post-contemporary rationality that possesses the immanent borderness as its distinctive feature. The Relationality and the Anotherness are investigaled as the common predicates of rationality that implicate the “classical” principles of reflexity, constructiveness, proportionality. The main principles of the poststructuralistic rationality correlating with the classical ones are recurrence (iterativity), doubleness, fragmentariness, differance. The congruence of the classical rationality and the post-contemporary one is caused by the equivalency of the concepts “transcendentality” and “borderness”. The synthetical unity (relation between deviation and connection) with its specification by the linking and the differance principles is determined by the mediative function of the assertion that is structured by the relationality parameters

    Climatic risks and impacts in South Asia: extremes of water scarcity and excess

    Get PDF
    This paper reviews the current knowledge of climatic risks and impacts in South Asia associated with anthropogenic warming levels of 1.5°C to 4°C above pre-industrial values in the 21st century. It is based on the World Bank Report “Turn Down the Heat, Climate Extremes, Regional Impacts and the Case for Resilience” (2013). Many of the climate change impacts in the region, which appear quite severe even with relatively modest warming of 1.5–2°C, pose significant hazards to development. For example, increased monsoon variability and loss or glacial meltwater will likely confront populations with ongoing and multiple challenges. The result is a significant risk to stable and reliable water resources for the region, with increases in peak flows potentially causing floods and dry season flow reductions threatening agriculture. Irrespective of the anticipated economic development and growth, climate projections indicate that large parts of South Asia’s growing population and especially the poor are likely to remain highly vulnerable to climate change

    Modelling carbon dynamics from urban land conversion: Fundamental model of city in relation to a local carbon cycle

    Get PDF
    Background: The main task is to estimate the qualitative and quantitative contribution of urban territories and precisely of the process of urbanization to the Global Carbon Cycle (GCC). Note that, on the contrary to many investigations that have considered direct anthropogenic emission of CO2(urbanized territories produce ca. 96-98% of it), we are interested in more subtle, and up until the present time, weaker processes associated with the conversion of the surrounding natural ecosystems and landscapes into urban lands. Such conversion inevitably takes place when cities are sprawling and additional "natural" lands are becoming "urbanized". Results: In order to fulfil this task, we first develop a fundamental model of urban space, since the type of land cover within a city makes a difference for a local carbon cycle. Hence, a city is sub-divided by built-up, "green"(parks, etc.) and informal settlements (favelas) fractions. Another aspect is a sub-division of the additional two regions, which makes the total number reaching eight regions, while the UN divides the world by six. Next, the basic model of the local carbon cycle for urbanized territories is built. We consider two processes: carbon emissions as a result of conversion of natural lands caused by urbanization; and the transformation of carbon flows by "urbanized" ecosystems; when carbon, accumulated by urban vegetation, is exported to the neighbouring territories. The total carbon flow in the model depends, in general, on two groups of parameters. The first includes the NPP, and the sum of living biomass and dead organic matter of ecosystems involved in the process of urbanization, and namely them we calculate here, using a new more realistic approach and taking into account the difference in regional cities' evolution. Conclusion: There is also another group of parameters, dealing with the areas of urban territories, and their annual increments. A method of dynamic forecasting of these parameters, based on the statistical regression model, was already suggested; nevertheless we shall further develop a new technique based on one idea to use the gamma-distribution. This will allow us to calculate the total carbon balance and to show how urbanization shifts it. © 2006 Svirejeva-Hopkins and Schellnhuber; licensee BioMed Central Ltd

    Nitrogen flows and fate in urban landscapes

    No full text

    Urbanised territories as a specific component of the global carbon cycle

    No full text
    Although urbanised territories (UT) produce most part of the anthropogenic emissions, we will only consider the following impacts on the Global Carbon Cycle (GCC): a) the additional carbon emissions that result from the conversion of natural, surrounding a city land, caused by urbanisation and b) the change of carbon flows by ''urbanised'' ecosystems, when the atmospheric carbon is ''pumping'' through ''urbanised'' ecosystems into neighboring natural ecosystems along the chain: atmosphere #-># vegetation #-># dead organic matter, i.e. export flow. The main task is to estimate the annual regional dynamics of the total carbon balance in UT with respect to the atmosphere from 1980 till 2050. As a scenario, we use the prognoses of regional urban populations produced by the ''hybrid'' model (multiregional demographic model + UN regional prognoses). All the estimations of carbon flows are based on two models. In the first model (minimal estimates), a regression equation relating the city area and population, is used, as well as an assumption about a random spatial distribution of cities. In the second model (maximal estimates), the so-called #GAMMA#-model is used, based on the assumption that the distribution of populated areas with respect to population density is a #GAMMA#-distribution with a non-random spatial distribution of cities. The urbanised area is sub-divided into ''green'' (parks, etc.), built-up and informal settlements (favelas) areas. The regional and world dynamics of carbon emission and export, and the annual total carbon balance are calculated. Qualitatively, both models give similar results, but there are some quantitative differences. In the first model, the world annual emissions as a result of land conversion will attain a maximum of 205 MtC between ca. 2020-2030. Emissions will then slowly decrease, so that by the year 2050, they will equal ca. 150 MtC. The maximum contributions to world emissions are given by China and the Asia and Pacific regions. In the second model, the world annual emissions increase from 1.12 GtC per year in 1980 up to 1.25 GtC per year in 2005, after which it will begin to decrease, such that by the year 2050, emissions will have decreased to 623 MtC. If we compare the emission maximum, 1.25 GtC per year, with the annual emission caused by the process of deforestation, 1.36 GtC per year in 1980, then we can say that the role of UT is of a comparable magnitude to the role of deforestation. (orig.)Available from TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Modelling carbon dynamics from urban land conversion: fundamental model of city in relation to a local carbon cycle

    No full text
    <p>Abstract</p> <p>Background</p> <p>The main task is to estimate the qualitative and quantitative contribution of urban territories and precisely of the process of urbanization to the Global Carbon Cycle (GCC). Note that, on the contrary to many investigations that have considered direct anthropogenic emission of CO<sub>2</sub>(urbanized territories produce ca. 96–98% of it), we are interested in more subtle, and up until the present time, weaker processes associated with the conversion of the surrounding natural ecosystems and landscapes into urban lands. Such conversion inevitably takes place when cities are sprawling and additional "natural" lands are becoming "urbanized".</p> <p>Results</p> <p>In order to fulfil this task, we first develop a fundamental model of urban space, since the type of land cover within a city makes a difference for a local carbon cycle. Hence, a city is sub-divided by built-up, „green" (parks, etc.) and informal settlements (<it>favelas</it>) fractions. Another aspect is a sub-division of the additional two regions, which makes the total number reaching eight regions, while the UN divides the world by six. Next, the basic model of the local carbon cycle for urbanized territories is built. We consider two processes: carbon emissions as a result of conversion of natural lands caused by urbanization; and the transformation of carbon flows by "urbanized" ecosystems; when carbon, accumulated by urban vegetation, is exported to the neighbouring territories. The total carbon flow in the model depends, in general, on two groups of parameters. The first includes the NPP, and the sum of living biomass and dead organic matter of ecosystems involved in the process of urbanization, and namely them we calculate here, using a new more realistic approach and taking into account the difference in regional cities' evolution.</p> <p>Conclusion</p> <p>There is also another group of parameters, dealing with the areas of urban territories, and their annual increments. A method of dynamic forecasting of these parameters, based on the statistical regression model, was already suggested; nevertheless we shall further develop a new technique based on one idea to use the gamma-distribution. This will allow us to calculate the total carbon balance and to show how urbanization shifts it.</p
    corecore