233 research outputs found
Very low inheritance in cosmogenic surface exposure ages of glacial deposits: A field experiment from two Norwegian glacier forelands
Terrestrial cosmogenic nuclide dating has been widely used to estimate the surface exposure age of bedrock and boulder surfaces associated with deglaciation and Holocene glacier variations, but the effect of inherited age has been rarely directly addressed. In this study, small clasts, embedded in flute surfaces on two cirque glacier forelands in Jotunheimen, southern Norway and deposited within the last ~60 years, were used to test whether such clasts have the modern surface exposure age expected in the absence of inheritance. Two different approaches were taken involving dating of (1) a single clast of cobble size from the proglacial area of Austanbotnbreen, and (2) 75 clasts mostly of pebble size from the proglacial area of Storbreen crushed and treated as a single sample. 10Be surface exposure ages were 99 ± 98 and 368 ± 90 years, respectively, with 95% confidence (±2σ). It is concluded that (1) these small glaciers have eroded and deposited rock fragments with a cosmogenic zero or near-zero concentration, (2) the likelihood of inherited cosmogenic nuclide concentrations in similar rock fragments deposited by larger warm-based glaciers and ice sheets should be small, and (3) combining a large number of small rock particles into one sample rather than using single large clasts of boulder size may provide a viable alternative to the commonly perceived need for five or more independent estimates of exposure age per site
A Mutation in Amino Acid Permease AAP6 Reduces the Amino Acid Content of the Arabidopsis Sieve Elements but Leaves Aphid Herbivores Unaffected.
The aim of this study was to investigate the role of the amino acid permease gene AAP6 in regulating phloem amino
acid composition and then to determine the effects of this altered diet on aphid performance. A genotype of
Arabidopsis thaliana (L.) was produced in which the function of the amino acid permease gene AAP6 (At5g49630)
was abolished. Plants homozygous for the insertionally inactivated AAP6 gene had a significantly larger mean
rosette width than the wild type and a greater number of cauline leaves. Seeds from the aap6 mutant were also
significantly larger than those from the wild-type plants. Sieve element (SE) sap was collected by aphid stylectomy
and the amino acids derivatized, separated, and quantified using Capillary Electrophoresis with Laser Induced
Fluorescence (CE-LIF). In spite of the large variation across samples, the total amino acid concentration of SE sap of the aap6 mutant plants was significantly lower than that of the wild-type plants. The concentrations of lysine,
phenylalanine, leucine, and aspartic acid were all significantly lower in concentration in the aap6 mutant plants compared with wild-type plants. This is the first direct demonstration of a physiological role for an amino acid transporter in regulating SE composition in vivo. The amino acid availability in sieve element sap is thought to be the major limiting factor for aphid growth and reproduction. Despite the changes in their diet, the aphid Myzus persicae(Sulzer) displayed only small changes in feeding behaviour on mutant plants when measured using the Electronic Penetration Graph (EPG) technique. Salivation by the aphid into the SE (E1 phase) was increased on mutant plants but there was no significant effect on other feeding EPG behaviours, or in the rate of honeydew production.
Consistent with the small effect on aphid feeding behaviour, there was only a small effect of reduced sieve element amino acid concentration on aphid reproduction. The data are discussed in relation to the regulation of phloem
composition and the role of phloem amino acids in regulating aphid performance
The Brecon Beacons
The Brecon Beacons of central and southern Wales offer the opportunity to explore a range of geomorphological processes, particularly those relating to the rapid climate changes associated with the period subsequent to the Last Glacial Maximum. The mountains present some of the best preserved evidence in the British Isles of the interplay between glacial, periglacial and paraglacial processes, associated with conditions of marginal glaciation, and provide the most southerly evidence of Younger Dryas/Loch Lomond Stadial glaciation of Britain. The absence of evidence for landscape evolution in the region prior to the Last Glacial Maximum has recently begun to be addressed through insights derived from the subterranean geomorphology of limestone found in the south of the region. As one of the key sites of the early Industrial Revolution, the Brecon Beacons also preserve a unique landscape of anthropogenic (or even anthropocenic) geomorphology associated with large scale coal and iron extraction
Schmidt-hammer exposure ages from periglacial patterned ground (sorted circles) in Jotunheimen, Norway, and their interpretative problems
© 2016 Swedish Society for Anthropology and Geography Periglacial patterned ground (sorted circles and polygons) along an altitudinal profile at Juvflya in central Jotunheimen, southern Norway, is investigated using Schmidt-hammer exposure-age dating (SHD). The patterned ground surfaces exhibit R-value distributions with platycurtic modes, broad plateaus, narrow tails, and a negative skew. Sample sites located between 1500 and 1925 m a.s.l. indicate a distinct altitudinal gradient of increasing mean R-values towards higher altitudes interpreted as a chronological function. An established regional SHD calibration curve for Jotunheimen yielded mean boulder exposure ages in the range 6910 ± 510 to 8240 ± 495 years ago. These SHD ages are indicative of the timing of patterned ground formation, representing minimum ages for active boulder upfreezing and maximum ages for the stabilization of boulders in the encircling gutters. Despite uncertainties associated with the calibration curve and the age distribution of the boulders, the early-Holocene age of the patterned ground surfaces, the apparent cessation of major activity during the Holocene Thermal Maximum (HTM) and continuing lack of late-Holocene activity clarify existing understanding of the process dynamics and palaeoclimatic significance of large-scale sorted patterned ground as an indicator of a permafrost environment. The interpretation of SHD ages from patterned ground surfaces remains challenging, however, owing to their diachronous nature, the potential for a complex history of formation, and the influence of local, non-climatic factors
Silencing of Aphid Genes by dsRNA Feeding from Plants
RNA interference (RNAi) is a valuable reverse genetics tool to study gene function in various organisms, including hemipteran insects such as aphids. Previous work has shown that RNAi-mediated knockdown of pea aphid (Acyrthosiphon pisum) genes can be achieved through direct injection of double-stranded RNA (dsRNA) or small-interfering RNAs (siRNA) into the pea aphid hemolymph or by feeding these insects on artificial diets containing the small RNAs.In this study, we have developed the plant-mediated RNAi technology for aphids to allow for gene silencing in the aphid natural environment and minimize handling of these insects during experiments. The green peach aphid M. persicae was selected because it has a broad plant host range that includes the model plants Nicotiana benthamiana and Arabidopsis thaliana for which transgenic materials can relatively quickly be generated. We targeted M. persicae Rack1, which is predominantly expressed in the gut, and M. persicae C002 (MpC002), which is predominantly expressed in the salivary glands. The aphids were fed on N. benthamiana leaf disks transiently producing dsRNA corresponding to these genes and on A. thaliana plants stably producing the dsRNAs. MpC002 and Rack-1 expression were knocked down by up to 60% on transgenic N. benthamiana and A. thaliana. Moreover, silenced M. persicae produced less progeny consistent with these genes having essential functions.Similar levels of gene silencing were achieved in our plant-mediated RNAi approach and published silencing methods for aphids. Furthermore, the N. benthamiana leaf disk assay can be developed into a screen to assess which genes are essential for aphid survival on plants. Our results also demonstrate the feasibility of the plant-mediated RNAi approach for aphid control
Acute Stress Induces Contrasting Changes in AMPA Receptor Subunit Phosphorylation within the Prefrontal Cortex, Amygdala and Hippocampus
Exposure to stress causes differential neural modifications in various limbic regions, namely the prefrontal cortex, hippocampus and amygdala. We investigated whether α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) phosphorylation is involved with these stress effects. Using an acute inescapable stress protocol with rats, we found opposite effects on AMPA receptor phosphorylation in the medial prefrontal cortex (mPFC) and dorsal hippocampus (DH) compared to the amygdala and ventral hippocampus (VH). After stress, the phosphorylation of Ser831-GluA1 was markedly decreased in the mPFC and DH, whereas the phosphorylation of Ser845-GluA1 was increased in the amygdala and VH. Stress also modulated the GluA2 subunit with a decrease in the phosphorylation of both Tyr876-GluA2 and Ser880-GluA2 residues in the amygdala, and an increase in the phosphorylation of Ser880-GluA2 in the mPFC. These results demonstrate that exposure to acute stress causes subunit-specific and region-specific changes in glutamatergic transmission, which likely lead to the reduced synaptic efficacy in the mPFC and DH and augmented activity in the amygdala and VH. In addition, these findings suggest that modifications of glutamate receptor phosphorylation could mediate the disruptive effects of stress on cognition. They also provide a means to reconcile the contrasting effects that stress has on synaptic plasticity in these regions. Taken together, the results provide support for a brain region-oriented approach to therapeutics
Oceanic loading of wildfire-derived organic compounds from a small mountainous river
Copyright 2008 by the American Geophysical Union.Small mountainous rivers (SMRs) export substantial amounts of sediment into the world's oceans. The concomitant yield of organic carbon (OC) associated with this class of rivers has also been shown to be significant and compositionally unique. We report here excessively high loadings of polycyclic aromatic hydrocarbons (PAHs), lignin, and levoglucosan, discharged from the Santa Clara River into the Santa Barbara Channel. The abundance of PAHs, levoglucosan, and lignin in Santa Barbara Channel sediments ranged from 201.7 to 1232.3 ng gdw−1, 1.3 to 6.9 μg gdw−1, and 0.3 to 2.2 mg per 100 mg of the sedimentary OC, respectively. Assuming a constant rate of sediment accumulation, the annual fluxes of PAHs, levoglucosan, and lignin, to the Santa Barbara Channel were respectively, 885.5 ± 170.2 ng cm−2 a−1, 3.5 ± 1.9 μg cm−2 a−1 and 1.4 ± 0.3 mg per 100 mg OC cm−2 a−1, over ∼30 years. The close agreement between PAHs, levoglucosan, and lignin abundance suggests that the depositional flux of these compounds is largely biomass combustion-derived. To that end, use of the Santa Clara River as a model for SMRs suggests this class of rivers may be one of the largest contributors of pyrolyzed carbon to coastal systems and the open ocean. Wildfire associated carbon discharged from other high yield fluvial systems, when considered collectively, may be a significant source of lignin, pyrolytic PAHs, and other pyrogenic compounds to the ocean. Extrapolating these methods over geologic time may offer useful historical information about carbon sequestration and burial in coastal sediments and affect coastal carbon budgets
Differential Regulation of the Excitability of Prefrontal Cortical Fast-Spiking Interneurons and Pyramidal Neurons by Serotonin and Fluoxetine
Serotonin exerts a powerful influence on neuronal excitability. In this study, we investigated the effects of serotonin on different neuronal populations in prefrontal cortex (PFC), a major area controlling emotion and cognition. Using whole-cell recordings in PFC slices, we found that bath application of 5-HT dose-dependently increased the firing of FS (fast spiking) interneurons, and decreased the firing of pyramidal neurons. The enhancing effect of 5-HT in FS interneurons was mediated by 5-HT2 receptors, while the reducing effect of 5-HT in pyramidal neurons was mediated by 5-HT1 receptors. Fluoxetine, the selective serotonin reuptake inhibitor, also induced a concentration-dependent increase in the excitability of FS interneurons, but had little effect on pyramidal neurons. In rats with chronic fluoxetine treatment, the excitability of FS interneurons was significantly increased, while pyramidal neurons remained unchanged. Fluoxetine injection largely occluded the enhancing effect of 5-HT in FS interneurons, but did not alter the reducing effect of 5-HT in pyramidal neurons. These data suggest that the excitability of PFC interneurons and pyramidal neurons is regulated by exogenous 5-HT in an opposing manner, and FS interneurons are the major target of Fluoxetine. It provides a framework for understanding the action of 5-HT and antidepressants in altering PFC network activity
Surface and subsurface flow in eucalyptus plantations in north-central Portugal
In the Baixo Vouga region of north-central Portugal, forests occupy half of the territory, of which two thirds
are Eucalypts plantations. The hydrological implications of this large-scale introduction of eucalypt are unknown and the
aim of this exploratory study, realized in the Caramulo Mountains, was to describe overland flow (OLF), subsurface flow
(SSF) and stream flow (Q) in a catchment dominated by Eucalyptus plantations. The main conclusions are that annual
OLF rate is low, spatially heterogeneous between 0.1% and 6% and concentrated during the wet season as saturation excess,
particularly as return flow. Infiltration-excess OLF due to the strong soil water repellence (SWR) is dominant during
dry season, but produces residual runoff amount. SSF is the principal mechanism of runoff formation. It originates
from matrix flow and pipe flow at the soil-bedrock interface, principally during the wet season. Matrix flow is correlated
with soil moisture (SM) content, with a threshold of 25 %. Pipe flow starts with saturation of soil bottom but without saturation
of the entire soil profile, due to a large network of macropores. Stream flow response is highly correlated with
matrix flow behaviour in timing and intensity. SWR induces a very patchy moistening of the soil, concentrates the fluxes
and accelerates them almost 100 times greater than normal percolation of the water in the matrix
- …