91 research outputs found

    Symmetric and Asymmetric Rounding

    Get PDF
    If rounded data are used in estimating moments and regression coefficients, the estimates are typically more or less biased. The purpose of the paper is to study the bias inducing effect of rounding, which is also seen when population moments instead of their estimates are considered. Under appropriate conditions this effect can be approximately specified by versions of Sheppard's correction formula. We discuss the conditions under which these approximations are valid. We also investigate the efficiency loss that comes along with rounding. The rounding error, which corresponds to the measurement error of a measurement error model, has a marginal distribution which can be approximated by the uniform distribution. We generalize the concept of simple rounding to that of asymmetric rounding and study its effect on the mean and variance of a distribution under similar circumstances as with simple rounding

    The influence of obesity on survival in early, high-risk breast cancer: results from the randomized SUCCESS A trial

    Get PDF
    Introduction: Obese breast cancer patients have worse prognosis than normal weight patients, but the level at which obesity is prognostically unfavorable is unclear. Methods: This retrospective analysis was performed using data from the SUCCESS A trial, in which 3754 patients with high-risk early breast cancer were randomized to anthracycline- and taxane-based chemotherapy with or without gemcitabine. Patients were classified as underweight/normal weight (body mass index (BMI) < 25.0), overweight (BMI 25.0–29.9), slightly obese (BMI 30.0–34.9), moderately obese (BMI 35.0–39.9) and severely obese (BMI ≥ 40.0), and the effect of BMI on disease-free survival (DFS) and overall survival (OS) was evaluated (median follow-up 65 months). In addition, subgroup analyses were conducted to assess the effect of BMI in luminal A-like, luminal B-like, HER2 (human epidermal growth factor 2)-positive and triple-negative tumors. Results: Multivariate analyses revealed an independent prognostic effect of BMI on DFS (p = 0.001) and OS (p = 0.005). Compared with underweight/normal weight patients, severely obese patients had worse DFS (hazard ratio (HR) 2.70, 95 % confidence interval (CI) 1.71–4.28, p < 0.001) and OS (HR 2.79, 95 % CI 1.63–4.77, p < 0.001), while moderately obese, slightly obese and overweight patients did not differ from underweight/normal weight patients with regard to DFS or OS. Subgroup analyses showed a similar significant effect of BMI on DFS and OS in patients with triple-negative breast cancer (TNBC), but not in patients with other tumor subtypes. Conclusions: Severe obesity (BMI ≥ 40) significantly worsens prognosis in early breast cancer patients, particularly for triple-negative tumors. Trial registration: Clinicaltrials.gov NCT02181101. Registered September 200

    On the Polynomial Measurement Error Model

    Get PDF
    This paper discusses point estimation of the coefficients of polynomial measurement error (errors-in-variables) models. This includes functional and structural models. The connection between these models and total least squares (TLS) is also examined. A compendium of existing as well as new results is presented

    Nonparametric identification of regulatory interactions from spatial and temporal gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The correlation between the expression levels of transcription factors and their target genes can be used to infer interactions within animal regulatory networks, but current methods are limited in their ability to make correct predictions.</p> <p>Results</p> <p>Here we describe a novel approach which uses nonparametric statistics to generate ordinary differential equation (ODE) models from expression data. Compared to other dynamical methods, our approach requires minimal information about the mathematical structure of the ODE; it does not use qualitative descriptions of interactions within the network; and it employs new statistics to protect against over-fitting. It generates spatio-temporal maps of factor activity, highlighting the times and spatial locations at which different regulators might affect target gene expression levels. We identify an ODE model for <it>eve </it>mRNA pattern formation in the <it>Drosophila melanogaster </it>blastoderm and show that this reproduces the experimental patterns well. Compared to a non-dynamic, spatial-correlation model, our ODE gives 59% better agreement to the experimentally measured pattern. Our model suggests that protein factors frequently have the potential to behave as both an activator and inhibitor for the same <it>cis</it>-regulatory module depending on the factors' concentration, and implies different modes of activation and repression.</p> <p>Conclusions</p> <p>Our method provides an objective quantification of the regulatory potential of transcription factors in a network, is suitable for both low- and moderate-dimensional gene expression datasets, and includes improvements over existing dynamic and static models.</p

    Stage III and oestrogen receptor negativity are associated with poor prognosis after adjuvant high-dose therapy in high-risk breast cancer

    Get PDF
    We report on the efficacy and toxicity of a sequential high-dose therapy with peripheral blood stem cell (PBSC) support in 85 patients with high-risk stage II/III breast cancer. There were 71 patients with more than nine tumour-positive axillary lymph nodes. An induction therapy of two cycles of ifosfamide (total dose, 7.5 g m−2) and epirubicin (120 mg m−2) was given, and PBSC were harvested during G-CSF-supported leucocyte recovery following the second cycle. The PBSC-supported high-dose chemotherapy consisted of two cycles of ifosfamide (total dose, 12 000 mg m−2), carboplatin (900 mg m−2) and epirubicin (180 mg m−2). Patients were autografted with a median number of 3.7 × 106 CD34+ cells kg−1 (range, 1.9–26.5 × 106) resulting in haematological reconstitution within approximately 2 weeks following high-dose therapy. The toxicity was moderate in general, and there was no treatment-related toxic death. Twenty-one patients relapsed between 3 and 30 months following the last cycle of high-dose therapy (median, 11 months). The probability of disease-free and overall survival at 4 years were 60% and 83%, respectively. According to a multivariate analysis, patients with stage II disease had a significantly better probability of disease-free survival (74%) in comparison to patients with stage III disease (36%). The probability of disease-free survival was also significantly better for patients with oestrogen receptor-positive tumours (70%) compared to patients with receptor-negative ones (40%). Bone marrow samples collected from 52 patients after high-dose therapy were examined to evaluate the prognostic relevance of isolated tumour cells. The proportion of patients presenting with tumour cell-positive samples did not change in comparison to that observed before high-dose therapy (65% vs 71%), but a decrease in the incidence and concentration of tumour cells was observed over time after high-dose therapy. This finding was true for patients with relapse and for those in remission, which argues against a prognostic significance of isolated tumour cells in bone marrow. In conclusion, sequential high-dose chemotherapy with PBSC support can be safely administered to patients with high-risk stage II/III breast cancer. Further intensification of the therapy, including the addition of non-cross resistant drugs or immunological approaches such as the use of antibodies against HER-2/NEU, may be envisaged for patients with stage III disease and hormone receptor-negative tumours. © 1999 Cancer Research Campaig

    The epidemiology of pertussis in Germany: past and present

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current and past pertussis epidemiology in the two parts of Germany is compared in the context of different histories of vaccination recommendations and coverage to better understand patterns of disease transmission.</p> <p>Methods</p> <p>Available regional pertussis surveillance and vaccination coverage data, supplemented by a literature search for published surveys as well as official national hospital and mortality statistics, were analyzed in the context of respective vaccination recommendations from 1964 onwards.</p> <p>Results</p> <p>Routine childhood pertussis vaccination was recommended in the German Democratic Republic (GDR) from 1964 and in former West German states (FWG) from 1969, but withdrawn from 1974–1991 in FWG. Pertussis incidence declined to <1 case/100.000 inhabitants in GDR prior to reunification in 1991, while in FWG, where pertussis was not notifiable after 1961, incidence was estimated at 160–180 cases/100.000 inhabitants in the 1970s-1980s. Despite recommendations for universal childhood immunization in 1991, vaccination coverage decreased in former East German States (FEG) and increased only slowly in FWG. After introduction of acellular pertussis vaccines in 1995, vaccination coverage increased markedly among younger children, but remains low in adolescents, especially in FWG, despite introduction of a booster vaccination for 9–17 year olds in 2000. Reported pertussis incidence increased in FEG to 39.3 cases/100.000 inhabitants in 2007, with the proportion of adults increasing from 20% in 1995 to 68% in 2007. From 2004–2007, incidence was highest among 5–14 year-old children, with a high proportion fully vaccinated according to official recommendations, which did not include a preschool booster until 2006. Hospital discharge statistics revealed a ~2-fold higher pertussis morbidity among infants in FWG than FEG.</p> <p>Conclusion</p> <p>The shift in pertussis morbidity to older age groups observed in FEG is similar to reports from other countries with longstanding vaccination programs and suggests that additional booster vaccination may be necessary beyond adolescence. The high proportion of fully vaccinated cases in older children in FEG suggests waning immunity 5–10 years after primary immunisation in infancy. The higher incidence of pertussis hospitalisations in infants suggests a stronger force of infection in FWG than FEG. Nationwide pertussis reporting is required for better evaluation of transmission patterns and vaccination policy in both parts of Germany.</p

    Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk

    Get PDF
    Background: A recent association study identified a common variant (rs9790517) at 4q24 to be associated with breast cancer risk. Independent association signals and potential functional variants in this locus have not been explored. Methods: We conducted a fine-mapping analysis in 55,540 breast cancer cases and 51,168 controls from the Breast Cancer Association Consortium. Results: Conditional analyses identified two independent association signals among women of European ancestry, represented by rs9790517 [conditional P = 2.51 × 10−4; OR, 1.04; 95% confidence interval (CI), 1.02–1.07] and rs77928427 (P = 1.86 × 10−4; OR, 1.04; 95% CI, 1.02–1.07). Functional annotation using data from the Encyclopedia of DNA Elements (ENCODE) project revealed two putative functional variants, rs62331150 and rs73838678 in linkage disequilibrium (LD) with rs9790517 (r2 ≥ 0.90) residing in the active promoter or enhancer, respectively, of the nearest gene, TET2. Both variants are located in DNase I hypersensitivity and transcription factor–binding sites. Using data from both The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), we showed that rs62331150 was associated with level of expression of TET2 in breast normal and tumor tissue. Conclusion: Our study identified two independent association signals at 4q24 in relation to breast cancer risk and suggested that observed association in this locus may be mediated through the regulation of TET2. Impact: Fine-mapping study with large sample size warranted for identification of independent loci for breast cancer risk

    Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium.

    Get PDF
    Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04-1.10, P = 2.9 × 10(-6)], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03-1.07, P = 1.7 × 10(-6)) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07-1.12, P = 5.1 × 10(-17)). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05-1.10, P = 1.0 × 10(-8)); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04-1.07, P = 2.0 × 10(-10)). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act.BCAC is funded by Cancer Research UK (C1287/A10118, C1287/A12014) and by the European Community’s Seventh Framework Programme under grant agreement n8 223175 (HEALTH-F2–2009-223175) (COGS). Meetings of the BCAC have been funded by the European Union COST programme (BM0606). Genotyping of the iCOGS array was funded by the European Union (HEALTH-F2-2009-223175), Cancer Research UK (C1287/A10710), the Canadian Institutes of Health Research for the ‘CIHR Team in Familial Risks of Breast Cancer’ program and the Ministry of Economic Development, Innovation and Export Trade of Quebec (PSR-SIIRI-701). Additional support for the iCOGS infrastructure was provided by the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112—the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. The ABCFS and OFBCR work was supported by grant UM1 CA164920 from the National Cancer Institute (USA). The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products or organizations imply endorsement t by the US Government or the BCFR. The ABCFS was also supported by the National Health and Medical Research Council of Australia, the New South Wales Cancer Council, the Victorian Health Promotion Foundation (Australia) and the Victorian Breast Cancer Research Consortium. J.L.H. is a National Health and Medical Research Council (NHMRC) Senior Principal Research Fellow and M.C.S. is a NHMRC Senior Research Fellow. The OFBCR work was also supported by the Canadian Institutes of Health Research ‘CIHR Team in Familial Risks of Breast Cancer’ program. The ABCS was funded by the Dutch Cancer Society Grant no. NKI2007-3839 and NKI2009-4363. The ACP study is funded by the Breast Cancer Research Trust, UK. The work of the BBCC was partly funded by ELAN-Programme of the University Hospital of Erlangen. The BBCS is funded by Cancer Research UK and Breakthrough Breast Cancer and acknowledges NHS funding to the NIHR Biomedical Research Centre, and the National Cancer Research Network (NCRN). E.S. is supported by NIHR Comprehensive Biomedical Research Centre, Guy’s & St. Thomas’ NHS Foundation Trust in partnership with King’s College London, UK. Core funding to the Wellcome Trust Centre for Human Genetics was provided by the Wellcome Trust (090532/Z/09/Z). I.T. is supported by the Oxford Biomedical Research Centre. The BSUCH study was supported by the Dietmar-Hopp Foundation, the Helmholtz Society and the German Cancer Research Center (DKFZ). The CECILE study was funded by the Fondation de France, the French National Institute of Cancer (INCa), The National League against Cancer, the National Agency for Environmental l and Occupational Health and Food Safety (ANSES), the National Agency for Research (ANR), and the Association for Research against Cancer (ARC). The CGPS was supported by the Chief Physician Johan Boserup and Lise Boserup Fund, the Danish Medical Research Council and Herlev Hospital.The CNIO-BCS was supported by the Genome Spain Foundation the Red Temática de Investigación Cooperativa en Cáncer and grants from the Asociación Española Contra el Cáncer and the Fondo de Investigación Sanitario PI11/00923 and PI081120). The Human Genotyping-CEGEN Unit, CNIO is supported by the Instituto de Salud Carlos III. D.A. was supported by a Fellowship from the Michael Manzella Foundation (MMF) and was a participant in the CNIO Summer Training Program. The CTS was initially supported by the California Breast Cancer Act of 1993 and the California Breast Cancer Research Fund (contract 97-10500) and is currently funded through the National Institutes of Health (R01 CA77398). Collection of cancer incidence e data was supported by the California Department of Public Health as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 103885. HAC receives support from the Lon V Smith Foundation (LVS39420). The ESTHER study was supported by a grant from the Baden Württemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe). The GENICA was funded by the Federal Ministry of Education and Research (BMBF) Germany grants 01KW9975/5, 01KW9976/8, 01KW9977/0 and 01KW0114, the Robert Bosch Foundation, Stuttgart, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), as well as the Department of Internal Medicine , Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus Bonn, Germany. The HEBCS was supported by the Helsinki University Central Hospital Research Fund, Academy of Finland (132473), the Finnish Cancer Society, The Nordic Cancer Union and the Sigrid Juselius Foundation. The HERPACC was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports, Culture and Technology of Japan, by a Grant-in-Aid for the Third Term Comprehensive 10-Year strategy for Cancer Control from Ministry Health, Labour and Welfare of Japan, by a research grant from Takeda Science Foundation , by Health and Labour Sciences Research Grants for Research on Applying Health Technology from Ministry Health, Labour and Welfare of Japan and by National Cancer Center Research and Development Fund. The HMBCS was supported by short-term fellowships from the German Academic Exchange Program (to N.B), and the Friends of Hannover Medical School (to N.B.). Financial support for KARBAC was provided through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, the Stockholm Cancer Foundation and the Swedish Cancer Society. The KBCP was financially supported by the special Government Funding (EVO) of Kuopio University Hospital grants, Cancer Fund of North Savo, the Finnish Cancer Organizations, the Academy of Finland and by the strategic funding of the University of Eastern Finland. kConFab is supported by grants from the National Breast Cancer Foundation , the NHMRC, the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia and the Cancer Foundation of Western Australia. The kConFab Clinical Follow Up Study was funded by the NHMRC (145684, 288704, 454508). Financial support for the AOCS was provided by the United States Army Medical Research and Materiel Command (DAMD17-01-1-0729), the Cancer Council of Tasmania and Cancer Foundation of Western Australia and the NHMRC (199600). G.C.T. and P.W. are supported by the NHMRC. LAABC is supported by grants (1RB-0287, 3PB-0102, 5PB-0018 and 10PB-0098) from the California Breast Cancer Research Program. Incident breast cancer cases were collected by the USC Cancer Surveillance Program (CSP) which is supported under subcontract by the California Department of Health. The CSP is also part of the National Cancer Institute’s Division of Cancer Prevention and Control Surveillance, Epidemiology, and End Results Program, under contract number N01CN25403. LMBC is supported by the ‘Stichting tegen Kanker’ (232-2008 and 196-2010). The MARIE study was supported by the Deutsche Krebshilfe e.V. (70-2892-BR I), the Federal Ministry of Education Research (BMBF) Germany (01KH0402), the Hamburg Cancer Society and the German Cancer Research Center (DKFZ). MBCSG is supported by grants from the Italian Association ciation for Cancer Research (AIRC) and by funds from the Italian citizens who allocated a 5/1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-Institutional strategic projects ‘5 × 1000’). The MCBCS was supported by the NIH grants (CA122340, CA128978) and a Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201), the Breast Cancer Research Foundation and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553 and 504711 and by infrastructure provided by Cancer Council Victoria. The MEC was supported by NIH grants CA63464, CA54281, CA098758 and CA132839. The work of MTLGEBCS was supported by the Quebec Breast Cancer Foundation, the Canadian Institutes of Health Research (grant CRN-87521) and the Ministry of Economic Development, Innovation and Export Trade (grant PSR-SIIRI-701). MYBRCA is funded by research grants from the Malaysian Ministry of Science, Technology and Innovation (MOSTI), Malaysian Ministry of Higher Education (UM.C/HlR/MOHE/06) and Cancer Research Initiatives Foundation (CARIF). Additional controls were recruited by the Singapore Eye Research Institute, which was supported by a grant from the Biomedical Research Council (BMRC08/1/35/19,tel:08/1/35/19./550), Singapore and the National medical Research Council, Singapore (NMRC/CG/SERI/2010). The NBCS was supported by grants from the Norwegian Research council (155218/V40, 175240/S10 to A.L.B.D., FUGE-NFR 181600/ V11 to V.N.K. and a Swizz Bridge Award to A.L.B.D.). The NBHS was supported by NIH grant R01CA100374. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The OBCS was supported by research grants from the Finnish Cancer Foundation, the Sigrid Juselius Foundation, the Academy of Finland, the University of Oulu, and the Oulu University Hospital. The ORIGO study was supported by the Dutch Cancer Society (RUL 1997-1505) and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NLCP16). The PBCS was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA. pKARMA is a combination of the KARMA and LIBRO-1 studies. KARMA was supported by Ma¨rit and Hans Rausings Initiative Against Breast Cancer. KARMA and LIBRO-1 were supported the Cancer Risk Prediction Center (CRisP; www.crispcenter.org), a Linnaeus Centre (Contract ID 70867902) financed by the Swedish Research Council. The RBCS was funded by the Dutch Cancer Society (DDHK 2004-3124, DDHK 2009-4318). SASBAC was supported by funding from the Agency for Science, Technology and Research of Singapore (A∗STAR), the US National Institute of Health (NIH) and the Susan G. Komen Breast Cancer Foundation KC was financed by the Swedish Cancer Society (5128-B07-01PAF). The SBCGS was supported primarily by NIH grants R01CA64277, R01CA148667, and R37CA70867. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The SBCS was supported by Yorkshire Cancer Research S305PA, S299 and S295. Funding for the SCCS was provided by NIH grant R01 CA092447. The Arkansas Central Cancer Registry is fully funded by a grant from National Program of Cancer Registries, Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from Mississippi were collected by the Mississippi Cancer Registry which participates in the National Program of Cancer Registries (NPCR) of the Centers for Disease Control and Prevention (CDC). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the CDC or the Mississippi Cancer Registry. SEARCH is funded by a programme grant from Cancer Research UK (C490/A10124) and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. The SEBCS was supported by the BRL (Basic Research Laboratory) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2012-0000347). SGBCC is funded by the National Medical Research Council Start-up Grant and Centre Grant (NMRC/CG/NCIS /2010). The recruitment of controls by the Singapore Consortium of Cohort Studies-Multi-ethnic cohort (SCCS-MEC) was funded by the Biomedical Research Council (grant number: 05/1/21/19/425). SKKDKFZS is supported by the DKFZ. The SZBCS was supported by Grant PBZ_KBN_122/P05/2004. K. J. is a fellow of International PhD program, Postgraduate School of Molecular Medicine, Warsaw Medical University, supported by the Polish Foundation of Science. The TNBCC was supported by the NIH grant (CA128978), the Breast Cancer Research Foundation , Komen Foundation for the Cure, the Ohio State University Comprehensive Cancer Center, the Stefanie Spielman Fund for Breast Cancer Research and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. Part of the TNBCC (DEMOKRITOS) has been co-financed by the European Union (European Social Fund – ESF) and Greek National Funds through the Operational Program ‘Education and Life-long Learning’ of the National Strategic Reference Framework (NSRF)—Research Funding Program of the General Secretariat for Research & Technology: ARISTEIA. The TWBCS is supported by the Institute of Biomedical Sciences, Academia Sinica and the National Science Council, Taiwan. The UKBGS is funded by Breakthrough Breast Cancer and the Institute of Cancer Research (ICR). ICR acknowledges NHS funding to the NIHR Biomedical Research Centre. Funding to pay the Open Access publication charges for this article was provided by the Wellcome Trust.This is the advanced access published version distributed under a Creative Commons Attribution License 2.0, which can also be viewed on the publisher's webstie at: http://hmg.oxfordjournals.org/content/early/2014/07/04/hmg.ddu311.full.pdf+htm
    corecore