104 research outputs found

    Unmovable Detection Unit of the Thermal Neutron Flux in the Source Range of the Reactor

    Get PDF
    This paper presents the results of theoretical and experimental research of the new unmovable detection unit of the thermal neutron flux in the source range of the reactor. The design features and the main parameters of this unit are also shown

    Deglacial-Holocene Pulses of Old Carbon-Enriched Mediterranean Water Masses: Implications for Aragonite Mounds Growth and Global Carbon Cycle

    Full text link
    Major changes in the Mediterranean Thermohaline Circulation (MedTHC) related to deglaciation and monsoon dynamics have been documented, while in turn, Mediterranean waters have been proposed to play a role back in global climate variability, ocean circulation and carbon cycle budgets, for instance via changes in water mass residence times. The 14C offset between coeval planktonic and benthic foraminifera over time is a very useful tool to infer variations in the water column ventilation (with no biological interference) that becomes more accurate when combined with local paired 14C-U/Th analyses in cold-water corals (CWC). Here, we present a multi-proxy-archive study (i.e., estimates of reservoir ages, ΔNd, [CO3 2-], O2 and current speed) carried out on the on-mound sediment core MD13-3452 (305 m, West Melilla, Alboran Sea, Western Mediterranean), which investigates potential deglacial changes and triggers in deep reservoir ages, as well as possible impacts on CWC aragonite mound growth and on global carbon cycle.Our combined foraminifera-CWC radioactive isotopes results show: 1) the arrival of two pulses of aged waters at intermediate depth corresponding to the Younger Dryas (YD) and to the end of the last sapropel (S1), when low CWC mound growth rates dominated, and 2) a very well-ventilated water mass between those two events, parallel to a CWC mound flourishing stage. In combination with the other proxies, poorer ventilated water pulses seem to have had a different origin, but common higher content in respired carbon. Our results allow, for the first time, changes in ventilation rates to be shown, quantified, and timed in association with a periodical MedTHC weakening, as well as suggesting significant aragonite dissolution as a cause of decreased mound growth rate when higher CO2 episodes. Our findings may have implications for past hydrographic interconnexions between Mediterranean basins and for global marine carbon storage and alkalinity budget in particular

    First report of mitochondrial COI in foraminifera and implications for DNA barcoding

    Get PDF
    Foraminifera are a species-rich phylum of rhizarian protists that are highly abundant in many marine environments and play a major role in global carbon cycling. Species recognition in Foraminifera is mainly based on morphological characters and nuclear 18S ribosomal RNA barcoding. The 18S rRNA contains variable sequence regions that allow for the identification of most foraminiferal species. Still, some species show limited variability, while others contain high levels of intragenomic polymorphisms, thereby complicating species identification. The use of additional, easily obtainable molecular markers other than 18S rRNA will enable more detailed investigation of evolutionary history, population genetics and speciation in Foraminifera. Here we present the first mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences ("barcodes") of Foraminifera. We applied shotgun sequencing to single foraminiferal specimens, assembled COI, and developed primers that allow amplification of COI in a wide range of foraminiferal species. We obtained COI sequences of 49 specimens from 17 species from the orders Rotaliida and Miliolida. Phylogenetic analysis showed that the COI tree is largely congruent with previously published 18S rRNA phylogenies. Furthermore, species delimitation with ASAP and ABGD algorithms showed that foraminiferal species can be identified based on COI barcodes.Microbial BiotechnologyNaturali

    Population demographics of golden perch (Macquaria ambigua) in the Darling River prior to a major fish kill: A guide for rehabilitation

    Get PDF
    An understanding of population demographics and life history processes is integral to the rehabilitation of fish populations. In Australia's highly modified Murray-Darling Basin, native fish are imperilled and fish deaths in the Darling River in 2018-19 highlighted their vulnerability. Golden perch (Macquaria ambigua) is a long-lived percichthyid that was conspicuous in the fish kills. To guide population rehabilitation in the Darling River, pre-fish kill age structure, provenance and movement of golden perch were explored using otolith microstructure and chemistry (87Sr/86Sr). Across the Lower and Mid-Darling River, recruitment was episodic, with dominant cohorts associated with years characterised by elevated discharge. There was substantial variability in age structure, recruitment source and movement patterns between the Lower and Mid-Darling River. In the Mid-Darling River, tributaries were an important recruitment source, whereas in the Lower Darling fish predominantly originated in the Darling River itself. Downstream movement of juveniles, upstream migration of adults and return movements to natal locations were important drivers of population structure. Restoring resilient golden perch populations in the Darling River will be reliant on mitigating barriers to movement, promoting a connected mosaic of recruitment sources and reinstating the hydrological and hydraulic factors associated with spawning, recruitment and dispersal. Globally, increasing water resource development and climate change will necessitate such integrated approaches to the management of long-lived migratory riverine fishes. © 2022 Journal Compilatio

    Relationship between mineralogy and minor element partitioning in limpets from an Ischia CO 2 vent site provides new insights into their biomineralization pathway

    Get PDF
    It has long since been noted that minor element (Me) partitioning into biogenic carbonates is sometimes different from Me partitioning into inorganically precipitated carbonates. The prime example is the partitioning coefficient, which might be lower or even higher than the one of inorganically precipitated carbonate. Such a difference is usually termed “vital effect” and is seen as indicative of a biologically modified minor element partitioning. Over the last three decades interest in conceptual biomineralization models compatible with minor element and isotope fractionation has been steadily increasing. However, inferring features of a biomineralization mechanism from Me partitioning is complicated, because not all partitioning coefficients show vital effects in every calcium carbonate producing organism. Moreover, the partitioning coefficient is not the only aspect of Me partitioning. Other aspects include polymorph specificity and rate dependence. Patellogastropod limpets are ideally suited for analysing Me partitioning in terms of biomineralization models, because they feature both aragonitic and calcitic shell parts, so that polymorph specificity can be tested. In this study, polymorph-specific partitioning of the minor elements Mg, Li, B, Sr, and U into shells of the patellogastropod limpet Patella caerulea from within and outside a CO2 vent site at Ischia (Italy) was investigated by means of LA-ICP-MS. The partitioning coefficients of U, B, Mg, and Sr (in aragonite) differed from the respective inorganic ones, while the partitioning coefficients of Li and Sr (in calcite) fell within the range of published values for inorganically precipitated carbonates. Polymorph specificity of Me partitioning was explicable in terms of inorganic precipitation in the case of Sr and Mg, but not Li and B. Seawater carbon chemistry did not have the effect on B partitioning that was expected on the basis of data on inorganic precipitates and foraminifera. Carbon chemistry did affect Mg (in aragonite) and Li, but only the effect on Mg was explicable in terms of calcification rate. On the one hand, these results show that Me partitioning in P. caerulea is incompatible with a direct precipitation of shell calcium carbonate from the extrapallial fluid. On the other hand, our results are compatible with precipitation from a microenvironment formed by the mantle. Such a microenvironment was proposed based on data other than Me partitioning. This is the first study which systematically employs a multi-element, multi-aspect approach to test the compatibility of Me partitioning with different conceptual biomineralization models

    Barramundi origins : Determining the contribution of stocking to the barramundi catch on Queensland’s east coast

    Get PDF
    Researchers from Queensland’s Department of Agriculture and Fisheries, James Cook University, and the University of Western Australia tested a range of otolith-based and genetic methods to identify hatchery-born from wild-born Barramundi. The project took place in the Dry Tropics region, where extensive historical and ongoing impoundment stocking (release of hatchery-born Barramundi into freshwater bodies) may be contributing to the downstream wild-capture marine and estuarine fishery. Fish samples were collected from the commercial and recreational wild-capture marine and estuarine fishery in 2019 and 2020, following the major Townsville floods in February 2019. The team identified a cost-effective means of using trace elements in fish otoliths to reliably distinguish hatchery-origin from wild-origin fish, measure the contribution of stocked fish to the wild population, and assess the sustainability of the wild-capture fishery

    Southern Hemisphere climate variability forced by Northern Hemisphere ice-sheet topography

    Get PDF
    The presence of large Northern Hemisphere ice sheets and reduced greenhouse gas concentrations during the Last Glacial Maximum fundamentally altered global ocean–atmosphere climate dynamics1. Model simulations and palaeoclimate records suggest that glacial boundary conditions affected the El Niño–Southern Oscillation2,3, a dominant source of short-term global climate variability. Yet little is known about changes in short-term climate variability at mid- to high latitudes. Here we use a high-resolution water isotope record from West Antarctica to demonstrate that interannual to decadal climate variability at high southern latitudes was almost twice as large at the Last Glacial Maximum as during the ensuing Holocene epoch (the past 11,700 years). Climate model simulations indicate that this increased variability reflects an increase in the teleconnection strength between the tropical Pacific and West Antarctica, owing to a shift in the mean location of tropical convection. This shift, in turn, can be attributed to the influence of topography and albedo of the North American ice sheets on atmospheric circulation. As the planet deglaciated, the largest and most abrupt decline in teleconnection strength occurred between approximately 16,000 years and 15,000 years ago, followed by a slower decline into the early Holocene

    16S rRNA gene metabarcoding and TEM reveals different ecological strategies within the genus Neogloboquadrina (planktonic foraminifer)

    Get PDF
    CB was supported on a Daphne Jackson Fellowship sponsored by Natural Environmental Research Council (www.nerc.ac.uk) and the University of Edinburgh via the Daphne Jackson Trust. Field collections were supported by the National Science Foundation (www.nsf.gov) grant number OCE-1261519 to ADR and JSF.Uncovering the complexities of trophic and metabolic interactions among microorganisms is essential for the understanding of marine biogeochemical cycling and modelling climate-driven ecosystem shifts. High-throughput DNA sequencing methods provide valuable tools for examining these complex interactions, although this remains challenging, as many microorganisms are difficult to isolate, identify and culture. We use two species of planktonic foraminifera from the climatically susceptible, palaeoceanographically important genus Neogloboquadrina, as ideal test microorganisms for the application of 16S rRNA gene metabarcoding. Neogloboquadrina dutertrei and Neogloboquadrina incompta were collected from the California Current and subjected to either 16S rRNA gene metabarcoding, fluorescence microscopy, or transmission electron microscopy (TEM) to investigate their species-specific trophic interactions and potential symbiotic associations. 53–99% of 16S rRNA gene sequences recovered from two specimens of N. dutertrei were assigned to a single operational taxonomic unit (OTU) from a chloroplast of the phylum Stramenopile. TEM observations confirmed the presence of numerous intact coccoid algae within the host cell, consistent with algal symbionts. Based on sequence data and observed ultrastructure, we taxonomically assign the putative algal symbionts to Pelagophyceae and not Chrysophyceae, as previously reported in this species. In addition, our data shows that N. dutertrei feeds on protists within particulate organic matter (POM), but not on bacteria as a major food source. In total contrast, of OTUs recovered from three N. incompta specimens, 83–95% were assigned to bacterial classes Alteromonadales and Vibrionales of the order Gammaproteobacteria. TEM demonstrates that these bacteria are a food source, not putative symbionts. Contrary to the current view that non-spinose foraminifera are predominantly herbivorous, neither N. dutertrei nor N. incompta contained significant numbers of phytoplankton OTUs. We present an alternative view of their trophic interactions and discuss these results within the context of modelling global planktonic foraminiferal abundances in response to high-latitude climate change.Publisher PDFPeer reviewe
    • 

    corecore