132 research outputs found

    Realistic shell-model calculations for proton particle-neutron hole nuclei around 132Sn

    Get PDF
    We have performed shell-model calculations for nuclei with proton particles and neutron holes around 132Sn using a realistic effective interaction derived from the CD-Bonn nucleon-nucleon potential. For the proton-neutron channel this is explicitly done in the particle-hole formalism. The calculated results are compared with the available experimental data, particular attention being focused on the proton particle-neutron hole multiplets. A very good agreement is obtained for all the four nuclei considered, 132Sb, 130Sb, 133Te and 131Sb. We predict many low-energy states which have no experimental counterpart. This may stimulate, and be helpful to, future experiments.Comment: 8 pages, 6 figures, to be published on Physical Review

    Proton-Neutron Interaction near Closed Shells

    Full text link
    Odd-odd nuclei around double shell closures are a direct source of information on the proton-neutron interaction between valence nucleons. We have performed shell-model calculations for doubly odd nuclei close to 208^{208}Pb, 132^{132}Sn and 100^{100}Sn using realistic effective interactions derived from the CD-Bonn nucleon-nucleon potential. The calculated results are compared with the available experimental data, attention being focused on particle-hole and particle-particle multiplets. While a good agreement is obtained for all the nuclei considered, a detailed analysis of the matrix elements of the effective interaction shows that a stronger core-polarization contribution seems to be needed in the particle-particle case.Comment: 8 pages, 6 figures, Proccedings of the International Conference "Nuclear Structure and Related Topics", Dubna, Russia, September 2-6, 2003, to be published in Yadernaia Fizika (Physics of Atomic Nuclei

    Evolution of the solar irradiance during the Holocene

    Full text link
    Aims. We present a physically consistent reconstruction of the total solar irradiance for the Holocene. Methods. We extend the SATIRE models to estimate the evolution of the total (and partly spectral) solar irradiance over the Holocene. The basic assumption is that the variations of the solar irradiance are due to the evolution of the dark and bright magnetic features on the solar surface. The evolution of the decadally averaged magnetic flux is computed from decadal values of cosmogenic isotope concentrations recorded in natural archives employing a series of physics-based models connecting the processes from the modulation of the cosmic ray flux in the heliosphere to their record in natural archives. We then compute the total solar irradiance (TSI) as a linear combination of the jth and jth + 1 decadal values of the open magnetic flux. Results. Reconstructions of the TSI over the Holocene, each valid for a di_erent paleomagnetic time series, are presented. Our analysis suggests that major sources of uncertainty in the TSI in this model are the heritage of the uncertainty of the TSI since 1610 reconstructed from sunspot data and the uncertainty of the evolution of the Earth's magnetic dipole moment. The analysis of the distribution functions of the reconstructed irradiance for the last 3000 years indicates that the estimates based on the virtual axial dipole moment are significantly lower at earlier times than the reconstructions based on the virtual dipole moment. Conclusions. We present the first physics-based reconstruction of the total solar irradiance over the Holocene, which will be of interest for studies of climate change over the last 11500 years. The reconstruction indicates that the decadally averaged total solar irradiance ranges over approximately 1.5 W/m2 from grand maxima to grand minima

    Charge-radius change and nuclear moments in the heavy tin isotopes from laser spectroscopy: Charge radius of 132^{132}Sn

    Get PDF
    NESTER ACCLaser spectroscopy measurements have been carried out on the neutron-rich tin isotopes with the COMPLIS experimental setup. Using the 5s25p25s^25p^2 3P05s25p6s^3P_0 \rightarrow 5s^25_p6s 3P1^3P_1 optical transition, hyperfine spectra of 126132^{126-132}Sn and 125,127,129131Snm^{125,127,129-131}Sn^m were recorded for the first time. The nuclear moments and the mean square charge radius variation (δ)wereextracted.Fromthequadrupolemomentvalues,thesenucleiappeartobespherical.Themagneticmomentsmeasuredarethuscomparedwiththosepredictedbysphericalbasisapproaches.Fromthemeasured\delta) were extracted. From the quadrupole moment values, these nuclei appear to be spherical. The magnetic moments measured are thus compared with those predicted by spherical basis approaches. From the measured \delta, the absolute charge radii of these isotopes were deduced in particular that of the doubly magic 132^{132}Sn nucleus. The comparison of the results with several mean-field-type calculations have shown that dynamical effects play an important role in the tin isotopes

    Recent results on neutron rich tin isotopes by laser spectroscopy

    Get PDF
    Laser spectroscopy measurements have been performed on neutron rich tin isotopes using the COMPLIS experimental setup. The nuclear charge radii of the even-even isotopes from A=108 to 132 are compared to the results of macroscopic and microscopic calculations. The improvements and optimizations needed to perform the isotope shift measurement on 134^{134}Sn are presented

    Updated Iberian archeomagnetic catalogue: new full vector paleosecular variation curve for the last three millennia

    Get PDF
    In this work, we present 16 directional and 27 intensity high‐quality values from Iberia. Moreover, we have updated the Iberian archeomagnetic catalogue published more than 10 years ago with a considerable increase in the database. This has led to a notable improvement of both temporal and spatial data distribution. A full vector paleosecular variation curve from 1000 BC to 1900 AD has been developed using high‐quality data within a radius of 900 km from Madrid. A hierarchical bootstrap method has been followed for the computation of the curves. The most remarkable feature of the new curves is a notable intensity maximum of about 80 μT around 600 BC, which has not been previously reported for the Iberian Peninsula. We have also analyzed the evolution of the paleofield in Europe for the last three thousand years and conclude that the high maximum intensity values observed around 600 BC in the Iberian Peninsula could respond to the same feature as the Levantine Iron Age Anomaly, after travelling westward through Europe
    corecore