6,234 research outputs found

    Grammar-Based Geodesics in Semantic Networks

    Full text link
    A geodesic is the shortest path between two vertices in a connected network. The geodesic is the kernel of various network metrics including radius, diameter, eccentricity, closeness, and betweenness. These metrics are the foundation of much network research and thus, have been studied extensively in the domain of single-relational networks (both in their directed and undirected forms). However, geodesics for single-relational networks do not translate directly to multi-relational, or semantic networks, where vertices are connected to one another by any number of edge labels. Here, a more sophisticated method for calculating a geodesic is necessary. This article presents a technique for calculating geodesics in semantic networks with a focus on semantic networks represented according to the Resource Description Framework (RDF). In this framework, a discrete "walker" utilizes an abstract path description called a grammar to determine which paths to include in its geodesic calculation. The grammar-based model forms a general framework for studying geodesic metrics in semantic networks.Comment: First draft written in 200

    Chiral properties of hematite ({\alpha}-Fe2O3) inferred from resonant Bragg diffraction using circularly polarized x-rays

    Full text link
    Chiral properties of the two phases - collinear motif (below Morin transition temperature, TM=250 K) and canted motif (above TM) - of magnetically ordered hematite ({\alpha}-Fe2O3) have been identified in single crystal resonant x-ray Bragg diffraction, using circular polarized incident x-rays tuned near the iron K-edge. Magneto-electric multipoles, including an anapole, fully characterize the high-temperature canted phase, whereas the low-temperature collinear phase supports both parity-odd and parity-even multipoles that are time-odd. Orbital angular momentum accompanies the collinear motif, while it is conspicuously absent with the canted motif. Intensities have been successfully confronted with analytic expressions derived from an atomic model fully compliant with chemical and magnetic structures. Values of Fe atomic multipoles previously derived from independent experimental data, are shown to be completely trustworthy

    On the Cauchy problem for a nonlinearly dispersive wave equation

    Full text link
    We establish the local well-posedness for a new nonlinearly dispersive wave equation and we show that the equation has solutions that exist for indefinite times as well as solutions which blowup in finite times. Furthermore, we derive an explosion criterion for the equation and we give a sharp estimate from below for the existence time of solutions with smooth initial data.Comment: arxiv version is already officia

    Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    Full text link
    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the SUNRISE balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca II H images obtained from the SUNRISE Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.Comment: Published in the Astrophysical Journal Supplement Serie

    Dynamical Processing of Geophysical Signatures based on SPOT-5 Remote Sensing Imagery

    Get PDF
    An intelligent post-processing computational paradigm based on the use of dynamical filtering techniques modified to enhance the quality of reconstruction of geophysical signatures based on Spot-5 imagery is proposed. As a matter of particular study, a robust algorithm is reported for the analysis of the dynamic behavior of geophysical indexes extracted from the real-world remotely sensed scenes. The simulation results verify the efficiency of the approach as required for decision support in resources management

    Multimorbidity Patterns in Elderly Primary Health Care Patients in a South Mediterranean European Region: A Cluster Analysis.

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tThis is the final version of the article. Available from Public Library of Science via the DOI in this record.OBJECTIVE: The purpose of this study was to identify clusters of diagnoses in elderly patients with multimorbidity, attended in primary care. DESIGN: Cross-sectional study. SETTING: 251 primary care centres in Catalonia, Spain. PARTICIPANTS: Individuals older than 64 years registered with participating practices. MAIN OUTCOME MEASURES: Multimorbidity, defined as the coexistence of 2 or more ICD-10 disease categories in the electronic health record. Using hierarchical cluster analysis, multimorbidity clusters were identified by sex and age group (65-79 and ≥80 years). RESULTS: 322,328 patients with multimorbidity were included in the analysis (mean age, 75.4 years [Standard deviation, SD: 7.4], 57.4% women; mean of 7.9 diagnoses [SD: 3.9]). For both men and women, the first cluster in both age groups included the same two diagnoses: Hypertensive diseases and Metabolic disorders. The second cluster contained three diagnoses of the musculoskeletal system in the 65- to 79-year-old group, and five diseases coincided in the ≥80 age group: varicose veins of the lower limbs, senile cataract, dorsalgia, functional intestinal disorders and shoulder lesions. The greatest overlap (54.5%) between the three most common diagnoses was observed in women aged 65-79 years. CONCLUSION: This cluster analysis of elderly primary care patients with multimorbidity, revealed a single cluster of circulatory-metabolic diseases that were the most prevalent in both age groups and sex, and a cluster of second-most prevalent diagnoses that included musculoskeletal diseases. Clusters unknown to date have been identified. The clusters identified should be considered when developing clinical guidance for this population.This study was supported by a grant from the Ministry of Science and Innovation through the Instituto Carlos III (ISCiii) in the 2012 call for Strategic Health Action proposals under the National Plan for Scientific Research, Development and Technological Innovation 2008–2011; by the European Union through the European Regional Development Fund (IP12/00427), as part of the Primary Care Prevention and Health Promotion Research Network (rediAPP), by ISCiii-RETICS (RD12/0005), by a 2011–2013 scholarship that aims to promote research in Primary Health Care by health professionals who have completed their specialty training, awarded by Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), by a National Institute for Health Research Clinician Scientist Award (Jose M Valderas, NIHR/CS/010/024) and by a grant from the XIX call for research projects in the elderly population by Agrupació Mútua Foundation (Premio ámbito para las personas mayores, 2012). The funders had no role in the study design, collection, analysis and interpretation of data, writing of the manuscript or decision to submit for publication

    Incidents control in radiotherapy oncology

    Get PDF
    Primer pla de l'escut del monarca del s. XVI, conservat i ubicat a la porta de la UB. Mesura 1,60 x 2,20 metre si és de pedra sorrenca

    Morphological properties of slender Ca II H fibrils observed by SUNRISE II

    Full text link
    We use seeing-free high spatial resolution Ca II H data obtained by the SUNRISE observatory to determine properties of slender fibrils in the lower solar chromosphere. In this work we use intensity images taken with the SUFI instrument in the Ca II H line during the second scientific flight of the SUNRISE observatory to identify and track elongated bright structures. After the identification, we analyze theses structures in order to extract their morphological properties. We identify 598 slender Ca II H fibrils (SCFs) with an average width of around 180 km, a length between 500 km and 4000 km, an average lifetime of ~400 s, and an average curvature of 0.002 arcsec^-1. The maximum lifetime of the SCFs within our time series of 57 minutes is ~2000 s. We discuss similarities and differences of the SCFs with other small-scale, chromospheric structures such as spicules of type I and II, or Ca II K fibrils.Comment: Accepted for publication in The Astrophysical Journal Supplement Serie

    Lubrication performance of an ammonium cation-based ionic liquid used as an additive in a polar oil.

    Get PDF
    This paper studies the tribological behavior of the ionic liquid methyltrioctylammonium bis(trifluoromethylsulfonyl)imide ([N 1888 ][NTf 2 ]) as additive at different concentrations (1.25, 2.50, 3.75 and 5.00 wt%) in a polar base oil (diester). A tribometer using a ball-on-disk reciprocating configuration under fully flooded lubrication was used at a frequency of 15 Hz, at three different loads (40, 80 and 120 N), stroke length of 4 mm, and duration of 45 min. Worn surface on the disk was studied by confocal microscopy, SEM and XPS. Main results showed similar coefficient of friction for all lubricant samples; but different wear results were found at different loads, probably related with the chemical states found for fluorine on the worn surface and the temperature-dependent adsorption-desorption processes

    Kinematics of Magnetic Bright Features in the Solar Photosphere

    Full text link
    Convective flows are known as the prime means of transporting magnetic fields on the solar surface. Thus, small magnetic structures are good tracers of the turbulent flows. We study the migration and dispersal of magnetic bright features (MBFs) in intergranular areas observed at high spatial resolution with Sunrise/IMaX. We describe the flux dispersal of individual MBFs as a diffusion process whose parameters are computed for various areas in the quiet Sun and the vicinity of active regions from seeing-free data. We find that magnetic concentrations are best described as random walkers close to network areas (diffusion index, gamma=1.0), travelers with constant speeds over a supergranule (gamma=1.9-2.0), and decelerating movers in the vicinity of flux emergence and/or within active regions (gamma=1.4-1.5). The three types of regions host MBFs with mean diffusion coefficients of 130 km^2/s, 80-90 km^2/s, and 25-70 km^2/s, respectively. The MBFs in these three types of regions are found to display a distinct kinematic behavior at a confidence level in excess of 95%.Comment: 8 pages, 4 figure
    corecore