2,622 research outputs found

    Bar pattern speed evolution over the last 7 Gyr

    Full text link
    The tumbling pattern of a bar is the main parameter characterising its dynamics. From numerical simulations, its evolution since bar formation is tightly linked to the dark halo in which the bar is formed through dynamical friction and angular momentum exchange. Observational measurements of the bar pattern speed with redshift can restrict models of galaxy formation and bar evolution. We aim to determine, for the first time, the bar pattern speed evolution with redshift based on morphological measurements. We have selected a sample of 44 low inclination ringed galaxies from the SDSS and COSMOS surveys covering the redshift range 0 <z< 0.8 to investigate the evolution of the bar pattern speed. We have derived morphological ratios between the deprojected outer ring radius (R_{ring}) and the bar size (R_{bar}). This quantity is related to the parameter {\cal R}=R_{CR}/R_{bar} used for classifiying bars in slow and fast rotators, and allow us to investigate possible differences with redshift. We obtain a similar distribution of RR at all redshifts. We do not find any systematic effect that could be forcing this result. The results obtained here are compatible with both, the bulk of the bar population (~70%) being fast-rotators and no evolution of the pattern speed with redshift. We argue that if bars are long-lasting structures, the results presented here imply that there has not been a substantial angular momentum exchange between the bar and halo, as predicted by numerical simulations. In consequence, this might imply that the discs of these high surface-brightness galaxies are maximal.Comment: Accepted for publication in A&

    Issues for Evaluating Reliability in Software Architectures

    Get PDF
    Currently, the requirements of Business sector promote more and more complex Information Systems. Reliability is one of the quality characteristics widely expected by users and developers. This characteristic is architectural by nature since it can be directly promoted by software architecture. This relation determines the importance of designing architectures that guarantee reliable systems. This article presents a research in progress whose objective is developing an architectural evaluation method based on Reliability. The first step considered for designing the method included: the construction of a Conceptual Model, a model to specify the architectural quality based on Reliability (Utility Tree), a set of scenarios associated to this characteristic. The first model allows identifying the concepts inherent to Reliability and their relationships; the second one covers all quality features related to Reliability in order to specify it; and the scenarios guide the software architect for anticipating context stimulus and evaluating the architectural responses

    Perspectives on Quantum Gravity Phenomenology

    Full text link
    The idea that quantum gravity manifestations would be associated with a violation of Lorentz invariance is very strongly bounded and faces serious theoretical challenges. Other related ideas seem to be drowning in interpretational quagmires. This leads us to consider alternative lines of thought for such phenomenological search. We discuss the underlying viewpoints and briefly mention their possible connections with other current theoretical ideas.Comment: Latex, 23 page

    Stellar Population gradients in galaxy discs from the CALIFA survey

    Get PDF
    While studies of gas-phase metallicity gradients in disc galaxies are common, very little has been done in the acquisition of stellar abundance gradients in the same regions. We present here a comparative study of the stellar metallicity and age distributions in a sample of 62 nearly face-on, spiral galaxies with and without bars, using data from the CALIFA survey. We measure the slopes of the gradients and study their relation with other properties of the galaxies. We find that the mean stellar age and metallicity gradients in the disc are shallow and negative. Furthermore, when normalized to the effective radius of the disc, the slope of the stellar population gradients does not correlate with the mass or with the morphological type of the galaxies. Contrary to this, the values of both age and metallicity at \sim2.5 scale-lengths correlate with the central velocity dispersion in a similar manner to the central values of the bulges, although bulges show, on average, older ages and higher metallicities than the discs. One of the goals of the present paper is to test the theoretical prediction that non-linear coupling between the bar and the spiral arms is an efficient mechanism for producing radial migrations across significant distances within discs. The process of radial migration should flatten the stellar metallicity gradient with time and, therefore, we would expect flatter stellar metallicity gradients in barred galaxies. However, we do not find any difference in the metallicity or age gradients in galaxies with without bars. We discuss possible scenarios that can lead to this absence of difference.Comment: 24 pages, 17 figures, accepted for publication in A&

    Imprints of galaxy evolution on H ii regions Memory of the past uncovered by the CALIFA survey

    Full text link
    H ii regions in galaxies are the sites of star formation and thus particular places to understand the build-up of stellar mass in the universe. The line ratios of this ionized gas are frequently used to characterize the ionization conditions. We use the Hii regions catalogue from the CALIFA survey (~5000 H ii regions), to explore their distribution across the classical [OIII]/Hbeta vs. [NII]/Halpha diagnostic diagram, and how it depends on the oxygen abundance, ionization parameter, electron density, and dust attenuation. We compared the line ratios with predictions from photoionization models. Finally, we explore the dependences on the properties of the host galaxies, the location within those galaxies and the properties of the underlying stellar population. We found that the location within the BPT diagrams is not totally predicted by photoionization models. Indeed, it depends on the properties of the host galaxies, their galactocentric distances and the properties of the underlying stellar population. These results indicate that although H ii regions are short lived events, they are affected by the total underlying stellar population. One may say that H ii regions keep a memory of the stellar evolution and chemical enrichment that have left an imprint on the both the ionizing stellar population and the ionized gasComment: 18 pages, 8 figures, accepted for publishing in A&

    H^+ -> W^+ l_i^- l_j^+$ decay in the two Higgs doublet model

    Full text link
    We study the lepton flavor violating H^+ -> W^+ l_i^- l_j^+ and the lepton flavor conserving $H^+ -> W^+ l_i^- l_i^+ (l_i=\tau, l_j=\mu) decays in the general 2HDM, so called model III. We estimate the decay width \Gamma for LFV (LFC) at the order of the magnitude of (10^{-11}-10^{-5}) GeV ((10^{-9}-10^{-4}) GeV), for 200 GeV\leq m_{H^\pm}\leq 400 GeV, and the intermediate values of the coupling \bar{\xi}^{E}_{N,\tau \mu}\sim 5 GeV (\bar{\xi}^{E}_{N,\tau \tau}\sim 30 GeV). We observe that the experimental result of the process under consideration can give comprehensive information about the physics beyond the standard model and the existing free parameters.Comment: 8 pages, 7 Figure

    CALIFA, the Calar Alto Legacy Integral Field Area survey: I. Survey presentation

    Get PDF
    We present here the Calar Alto Legacy Integral Field Area (CALIFA) survey, which has been designed to provide a first step in this direction.We summarize the survey goals and design, including sample selection and observational strategy.We also showcase the data taken during the first observing runs (June/July 2010) and outline the reduction pipeline, quality control schemes and general characteristics of the reduced data. This survey is obtaining spatially resolved spectroscopic information of a diameter selected sample of 600\sim600 galaxies in the Local Universe (0.005< z <0.03). CALIFA has been designed to allow the building of two-dimensional maps of the following quantities: (a) stellar populations: ages and metallicities; (b) ionized gas: distribution, excitation mechanism and chemical abundances; and (c) kinematic properties: both from stellar and ionized gas components. CALIFA uses the PPAK Integral Field Unit (IFU), with a hexagonal field-of-view of \sim1.3\sq\arcmin', with a 100% covering factor by adopting a three-pointing dithering scheme. The optical wavelength range is covered from 3700 to 7000 {\AA}, using two overlapping setups (V500 and V1200), with different resolutions: R\sim850 and R\sim1650, respectively. CALIFA is a legacy survey, intended for the community. The reduced data will be released, once the quality has been guaranteed. The analyzed data fulfill the expectations of the original observing proposal, on the basis of a set of quality checks and exploratory analysis. We conclude from this first look at the data that CALIFA will be an important resource for archaeological studies of galaxies in the Local Universe.Comment: 32 pages, 29 figures, Accepted for publishing in Astronomy and Astrophysic
    corecore