40 research outputs found

    Atlantic mammal traits: a dataset of morphological traits of mammals in the atlantic forest of south America

    Get PDF
    Measures of traits are the basis of functional biological diversity. Numerous works consider mean species-level measures of traits while ignoring individual variance within species. However, there is a large amount of variation within species and it is increasingly apparent that it is important to consider trait variation not only between species, but also within species. Mammals are an interesting group for investigating trait-based approaches because they play diverse and important ecological functions (e.g., pollination, seed dispersal, predation, grazing) that are correlated with functional traits. Here we compile a data set comprising morphological and life history information of 279 mammal species from 39,850 individuals of 388 populations ranging from −5.83 to −29.75 decimal degrees of latitude and −34.82 to −56.73 decimal degrees of longitude in the Atlantic forest of South America. We present trait information from 16,840 individuals of 181 species of non-volant mammals (Rodentia, Didelphimorphia, Carnivora, Primates, Cingulata, Artiodactyla, Pilosa, Lagomorpha, Perissodactyla) and from 23,010 individuals of 98 species of volant mammals (Chiroptera). The traits reported include body mass, age, sex, reproductive stage, as well as the geographic coordinates of sampling for all taxa. Moreover, we gathered information on forearm length for bats and body length and tail length for rodents and marsupials. No copyright restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications. We also request that researchers and teachers inform us of how they are using the data.Fil: Gonçalves, Fernando. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Bovendorp, Ricardo S.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Beca, Gabrielle. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Bello, Carolina. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Costa Pereira, Raul. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Muylaert, Renata L.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Rodarte, Raisa R.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Villar, Nacho. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Souza, Rafael. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Graipel, Maurício E.. Universidade Federal de Santa Catarina; BrasilFil: Cherem, Jorge J.. Caipora Cooperativa, Florianopolis; BrasilFil: Faria, Deborah. Universidade Estadual de Santa Cruz; BrasilFil: Baumgarten, Julio. Universidade Estadual de Santa Cruz; BrasilFil: Alvarez, Martín R.. Universidade Estadual de Santa Cruz; BrasilFil: Vieira, Emerson M.. Universidade do Brasília; BrasilFil: Cáceres, Nilton. Universidade Federal de Santa María. Santa María; BrasilFil: Pardini, Renata. Universidade de Sao Paulo; BrasilFil: Leite, Yuri L. R.. Universidade Federal do Espírito Santo; BrasilFil: Costa, Leonora Pires. Universidade Federal do Espírito Santo; BrasilFil: Mello, Marco Aurelio Ribeiro. Universidade Federal de Minas Gerais; BrasilFil: Fischer, Erich. Universidade Federal do Mato Grosso do Sul; BrasilFil: Passos, Fernando C.. Universidade Federal do Paraná; BrasilFil: Varzinczak, Luiz H.. Universidade Federal do Paraná; BrasilFil: Prevedello, Jayme A.. Universidade do Estado de Rio do Janeiro; BrasilFil: Cruz-Neto, Ariovaldo P.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Carvalho, Fernando. Universidade do Extremo Sul Catarinense; BrasilFil: Reis Percequillo, Alexandre. Universidade de Sao Paulo; BrasilFil: Paviolo, Agustin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; ArgentinaFil: Duarte, José M. B.. Universidade Estadual Paulista Julio de Mesquita Filho; Brasil. Fundación Oswaldo Cruz; BrasilFil: Bernard, Enrico. Universidade Federal de Pernambuco; BrasilFil: Agostini, Ilaria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; ArgentinaFil: Lamattina, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Ministerio de Salud de la Nación; ArgentinaFil: Vanderhoeven, Ezequiel Andres. Ministerio de Salud de la Nación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentin

    Wild dogs at stake: deforestation threatens the only Amazon endemic canid, the short-eared dog (Atelocynus microtis)

    Get PDF
    The persistent high deforestation rate and fragmentation of the Amazon forests are the main threats to their biodiversity. To anticipate and mitigate these threats, it is important to understand and predict how species respond to the rapidly changing landscape. The short-eared dog Atelocynus microtis is the only Amazon-endemic canid and one of the most understudied wild dogs worldwide. We investigated short-eared dog habitat associations on two spatial scales. First, we used the largest record database ever compiled for short-eared dogs in combination with species distribution models to map species habitat suitability, estimate its distribution range and predict shifts in species distribution in response to predicted deforestation across the entire Amazon (regional scale). Second, we used systematic camera trap surveys and occupancy models to investigate how forest cover and forest fragmentation affect the space use of this species in the Southern Brazilian Amazon (local scale). Species distribution models suggested that the short-eared dog potentially occurs over an extensive and continuous area, through most of the Amazon region south of the Amazon River. However, approximately 30% of the short-eared dog's current distribution is expected to be lost or suffer sharp declines in habitat suitability by 2027 (within three generations) due to forest loss. This proportion might reach 40% of the species distribution in unprotected areas and exceed 60% in some interfluves (i.e. portions of land separated by large rivers) of the Amazon basin. Our local-scale analysis indicated that the presence of forest positively affected short-eared dog space use, while the density of forest edges had a negative effect. Beyond shedding light on the ecology of the short-eared dog and refining its distribution range, our results stress that forest loss poses a serious threat to the conservation of the species in a short time frame. Hence, we propose a re-assessment of the short-eared dog's current IUCN Red List status (Near Threatened) based on findings presented here. Our study exemplifies how data can be integrated across sources and modelling procedures to improve our knowledge of relatively understudied species

    How many bird and mammal extinctions has recent conservation action prevented?

    Get PDF
    Aichi Target 12 of the Convention on Biological Diversity (CBD) contains the aim to ‘prevent extinctions of known threatened species’. To measure the degree to which this was achieved, we used expert elicitation to estimate the number of bird and mammal species whose extinctions were prevented by conservation action in 1993–2020 (the lifetime of the CBD) and 2010–2020 (the timing of Aichi Target 12). We found that conservation action prevented 21–32 bird and 7–16 mammal extinctions since 1993, and 9–18 bird and two to seven mammal extinctions since 2010. Many remain highly threatened and may still become extinct. Considering that 10 bird and five mammal species did go extinct (or are strongly suspected to) since 1993, extinction rates would have been 2.9–4.2 times greater without conservation action. While policy commitments have fostered significant conservation achievements, future biodiversity action needs to be scaled up to avert additional extinctions

    How many bird and mammal extinctions has recent conservation action prevented?

    Get PDF
    Aichi Target 12 of the Convention on Biological Diversity (CBD) aims to ‘prevent extinctions of known threatened species’. To measure its success, we used a Delphi expert elicitation method to estimate the number of bird and mammal species whose extinctions were prevented by conservation action in 1993 - 2020 (the lifetime of the CBD) and 2010 - 2020 (the timing of Aichi Target 12). We found that conservation prevented 21–32 bird and 7–16 mammal extinctions since 1993, and 9–18 bird and 2–7 mammal extinctions since 2010. Many remain highly threatened, and may still become extinct in the near future. Nonetheless, given that ten bird and five mammal species did go extinct (or are strongly suspected to) since 1993, extinction rates would have been 2.9–4.2 times greater without conservation action. While policy commitments have fostered significant conservation achievements, future biodiversity action needs to be scaled up to avert additional extinctions

    Body Size Evolution in Extant Oryzomyini Rodents: Cope's Rule or Miniaturization?

    Get PDF
    At the macroevolutionary level, one of the first and most important hypotheses that proposes an evolutionary tendency in the evolution of body sizes is “Cope's rule". This rule has considerable empirical support in the fossil record and predicts that the size of species within a lineage increases over evolutionary time. Nevertheless, there is also a large amount of evidence indicating the opposite pattern of miniaturization over evolutionary time. A recent analysis using a single phylogenetic tree approach and a Bayesian based model of evolution found no evidence for Cope's rule in extant mammal species. Here we utilize a likelihood-based phylogenetic method, to test the evolutionary trend in body size, which considers phylogenetic uncertainty, to discern between Cope's rule and miniaturization, using extant Oryzomyini rodents as a study model. We evaluated body size trends using two principal predictions: (a) phylogenetically related species are more similar in their body size, than expected by chance; (b) body size increased (Cope's rule)/decreased (miniaturization) over time. Consequently the distribution of forces and/or constraints that affect the tendency are homogenous and generate this directional process from a small/large sized ancestor. Results showed that body size in the Oryzomyini tribe evolved according to phylogenetic relationships, with a positive trend, from a small sized ancestor. Our results support that the high diversity and specialization currently observed in the Oryzomyini tribe is a consequence of the evolutionary trend of increased body size, following and supporting Cope's rule

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset
    corecore