221 research outputs found

    Analysis and application of ERTS-1 data for regional geological mapping

    Get PDF
    Combined visual and digital techniques of analysing ERTS-1 data for geologic information have been tried on selected areas in Pennsylvania. The major physiolographic and structural provinces show up well. Supervised mapping, following the imaged expression of known geologic features on ERTS band 5 enlargements (1:250,000) of parts of eastern Pennsylvania, delimited the Diabase Sills and the Precambrian rocks of the Reading Prong with remarkable accuracy. From unsupervised mapping, transgressive linear features are apparent in unexpected density, and exhibit strong control over river valley and stream channel directions. They are unaffected by bedrock type, age, or primary structural boundaries, which suggests they are either rejuvenated basement joint directions on different scales, or they are a recently impressed structure possibly associated with a drifting North American plate. With ground mapping and underflight data, 6 scales of linear features have been recognized

    Short-term variability in Greenland Ice Sheet motion forced by time-varying meltwater inputs: implications for the relationship between subglacial drainage system behavior and ice velocity.

    Get PDF
    High resolution measurements of ice motion along a -120 km transect in a land-terminating section of the GrIS reveal short-term velocity variations (<1 day), which are forced by rapid variations in meltwater input to the subglacial drainage system from the ice sheet surface. The seasonal changes in ice velocity at low elevations (<1000 m) are dominated by events lasting from 1 day to 1 week, although daily cycles are largely absent at higher elevations, reflecting different patterns of meltwater input. Using a simple model of subglacial conduit behavior we show that the seasonal record of ice velocity can be understood in terms of a time-varying water input to a channelized subglacial drainage system. Our investigation substantiates arguments that variability in the duration and rate, rather than absolute volume, of meltwater delivery to the subglacial drainage system are important controls on seasonal patterns of subglacial water pressure, and therefore ice velocity. We suggest that interpretations of hydro-dynamic behavior in land-terminating sections of the GrIS margin which rely on steady state drainage theories are unsuitable for making predictions about the effect of increased summer ablation on future rates of ice motion. © 2012. American Geophysical Union

    Characterization of volcanic reservoirs; insights from the Badejo and Linguado oil field, Campos Basin, Brazil

    Get PDF
    Funding Information: This work was financially supported by Petrobras (CENPES – Research Center and Exploration) projects. Especially the authors of Petrobras appreciate the fruitful discussions with the VMAPP Consortium (Volcanic Margin Petroleum Prospectivity) team and workshops. The authors would like to thank also all those who contributed in some way to make this work possible. Dougal A. Jerram and Sverre Plank acknowledge the support from the Research Council of Norway through its Centres of Excellence funding scheme, project 22372 (CEED).Peer reviewedPostprin

    Paleoenvironmental implications of authigenic magnesian clay formation sequences in the Barra Velha formation (Santos Basin, Brazil)

    Full text link
    The characterization of Mg-clays in rock samples (well P1) from the Barra Velha Formation (Early Cretaceous) allowed the establishment of mineral assemblages on the basis of their kerolite and Mg-smectite (stevensite and saponite) content. Kerolite-rich assemblages (A and B) rarely con-tain saponite. Assemblage B is composed of kerolite-stevensite mixed layers, while assemblage A consists of more than 95% kerolite. Mg-smectite-rich assemblages (C and CB) are made up of both Mg-smectites. The predominance of stevensite in the lower interval of the stratigraphic succession suggests evaporative conditions, higher salinity and pH, which would favor its authigenesis by neoformation. In the upper portion, the occurrence of thick kerolite-rich intervals suggests regular water inputs, contributing with a decreasing in salinity and pH, favoring the neoformation of kero-lite and later kerolite-stevensite mixed layering. The saponite would be the result of the transfor-mation from Al-smectite into Mg-smectite in a Mg2+ rich medium. The results indicate that lake hydrochemical processes would have allowed the establishment of a basic depositional sequence, from base to top, as follows: (i) initial lake expansion stage marked by the occurrence of saponite, (ii) later kerolite neoformation, (iii) formation of kerolite-stevensite mixed layer with increasing sa-linity, and (iv) neoformation of stevensite, marking a final stage of maximum salinity (evaporation) and alkalinity of the lak

    Greenland ice sheet annual motion insensitive to spatial variations in subglacial hydraulic structure

    Get PDF
    We present ice velocities observed with global positioning systems and TerraSAR-X/TanDEM-Xin a land-terminating region of the southwest Greenland ice sheet (GrIS) during the melt year 2012–2013, toexamine the spatial pattern of seasonal and annual ice motion. We find that while spatial variability in theconfiguration of the subglacial drainage system controls ice motion at short timescales, this configurationhas negligible impact on the spatial pattern of the proportion of annual motion which occurs duringsummer. While absolute annual velocities vary substantially, the proportional contribution of summermotion to annual motion does not. These observations suggest that in land-terminating margins of the GrIS,subglacial hydrology does not significantly influence spatial variations in net summer speedup.Furthermore, our findings imply that not every feature of the subglacial drainage system needs to beresolved in ice sheet models

    Ralph: A Visible/Infrared Imager for the New Horizons Pluto/Kuiper Belt Mission

    Full text link
    The New Horizons instrument named Ralph is a visible/near infrared multi-spectral imager and a short wavelength infrared spectral imager. It is one of the core instruments on New Horizons, NASA's first mission to the Pluto/Charon system and the Kuiper Belt. Ralph combines panchromatic and color imaging capabilities with IR imaging spectroscopy. Its primary purpose is to map the surface geology and composition of these objects, but it will also be used for atmospheric studies and to map the surface temperature. It is a compact, low-mass (10.5 kg), power efficient (7.1 W peak), and robust instrument with good sensitivity and excellent imaging characteristics. Other than a door opened once in flight, it has no moving parts. These characteristics and its high degree of redundancy make Ralph ideally suited to this long-duration flyby reconnaissance mission.Comment: 18 pages, 15 figures, 4 tables; To appear in a special volume of Space Science Reviews on the New Horizons missio

    Insights into Spatial Sensitivities of Ice Mass Response to Environmental Change from the SeaRISE Ice Sheet Modeling Project I: Antarctica

    Get PDF
    Atmospheric, oceanic, and subglacial forcing scenarios from the Sea-level Response to Ice Sheet Evolution (SeaRISE) project are applied to six three-dimensional thermomechanical ice-sheet models to assess Antarctic ice sheet sensitivity over a 500 year timescale and to inform future modeling and field studies. Results indicate (i) growth with warming, except within low-latitude basins (where inland thickening is outpaced by marginal thinning); (ii) mass loss with enhanced sliding (with basins dominated by high driving stresses affected more than basins with low-surface-slope streaming ice); and (iii) mass loss with enhanced ice shelf melting (with changes in West Antarctica dominating the signal due to its marine setting and extensive ice shelves; cf. minimal impact in the Terre Adelie, George V, Oates, and Victoria Land region of East Antarctica). Ice loss due to dynamic changes associated with enhanced sliding and/or sub-shelf melting exceeds the gain due to increased precipitation. Furthermore, differences in results between and within basins as well as the controlling impact of sub-shelf melting on ice dynamics highlight the need for improved understanding of basal conditions, grounding-zone processes, ocean-ice interactions, and the numerical representation of all three

    Subglacial lake drainage detected beneath the Greenland ice sheet

    Get PDF
    The contribution of the Greenland ice sheet to sea-level rise has accelerated in recent decades. Subglacial lake drainage events can induce an ice sheet dynamic response—a process that has been observed in Antarctica, but not yet in Greenland, where the presence of subglacial lakes has only recently been discovered. Here we investigate the water flow paths from a subglacial lake, which drained beneath the Greenland ice sheet in 2011. Our observations suggest that the lake was fed by surface meltwater flowing down a nearby moulin, and that the draining water reached the ice margin via a subglacial tunnel. Interferometric synthetic aperture radar-derived measurements of ice surface motion acquired in 1995 suggest that a similar event may have occurred 16 years earlier, and we propose that, as the climate warms, increasing volumes of surface meltwater routed to the bed will cause such events to become more common in the future
    corecore