177 research outputs found

    A roadmap to integrate astrocytes into Systems Neuroscience

    Get PDF
    Systems Neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+^{2+} transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in time scales of sub-seconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, are, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration, such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+^{2+} and brain coding may represent a leap forward towards novel approaches in the study of astrocytes in health and disease.Junior Leader Fellowhip Program by 'la Caixa' Banking Foundation, LCF/BQ/LI18/11630006 BFU2017-85936-P BFU2016-75107-P BFU2016-79735-P FLAGERA-PCIN-2015-162-C02-02 HHMI 55008742 FPU13/05377 NIH R01NS099254 NSF 1604544 Agència de Gestio d’Ajuts Universitaris i de Recerca, 2017 SGR54

    Lipid droplet biogenesis induced by stress involves triacylglycerol synthesis that depends on group VIA phospholipase A2

    Get PDF
    This work investigates the metabolic origin of triacylglycerol (TAG) formed during lipid droplet (LD) biogenesis induced by stress. Cytotoxic inhibitors of fatty acid synthase induced TAG synthesis and LD biogenesis in CHO-K1 cells, in the absence of external sources of fatty acids. TAG synthesis was required for LD biogenesis and was sensitive to inhibition and down-regulation of the expression of group VIA phospholipase A2 (iPLA2-VIA). Induction of stress with acidic pH, C2-ceramide, tunicamycin, or deprivation of glucose also stimulated TAG synthesis and LD formation in a manner dependent on iPLA2-VIA. Overexpression of the enzyme enhanced TAG synthesis from endogenous fatty acids and LD occurrence. During stress, LD biogenesis but not TAG synthesis required phosphorylation and activation of group IVA PLA2 (cPLA2α). The results demonstrate that iPLA2-VIA provides fatty acids for TAG synthesis while cPLA2α allows LD biogenesis. LD biogenesis during stress may be a survival strategy, recycling structural phospholipids into energy-generating substrates

    Three applications of path integrals: equilibrium and kinetic isotope effects, and the temperature dependence of the rate constant of the [1,5] sigmatropic hydrogen shift in (Z)-1,3-pentadiene

    Get PDF
    Recent experiments have confirmed the importance of nuclear quantum effects even in large biomolecules at physiological temperature. Here we describe how the path integral formalism can be used to describe rigorously the nuclear quantum effects on equilibrium and kinetic properties of molecules. Specifically, we explain how path integrals can be employed to evaluate the equilibrium (EIE) and kinetic (KIE) isotope effects, and the temperature dependence of the rate constant. The methodology is applied to the [1,5] sigmatropic hydrogen shift in pentadiene. Both the KIE and the temperature dependence of the rate constant confirm the importance of tunneling and other nuclear quantum effects as well as of the anharmonicity of the potential energy surface. Moreover, previous results on the KIE were improved by using a combination of a high level electronic structure calculation within the harmonic approximation with a path integral anharmonicity correction using a lower level method.Comment: 9 pages, 4 figure

    Group IVA phospholipase A2 is necessary for the biogenesis of lipid droplets

    Get PDF
    Lipid droplets (LD) are organelles present in all cell types, consisting of a hydrophobic core of triacylglycerols and cholesteryl esters, surrounded by a monolayer of phospholipids and cholesterol. This work shows that LD biogenesis induced by serum, by long-chain fatty acids, or the combination of both in CHO-K1 cells was prevented by phospholipase A2 inhibitors with a pharmacological profile consistent with the implication of group IVA cytosolic phospholipase A2 (cPLA2α). Knocking down cPLA2α expression with short interfering RNA was similar to pharmacological inhibition in terms of enzyme activity and LD biogenesis. A Chinese hamster ovary cell clone stably expressing an enhanced green fluorescent protein-cPLA2α fusion protein (EGFP-cPLA2) displayed higher LD occurrence under basal conditions and upon LD induction. Induction of LD took place with concurrent phosphorylation of cPLA2α at Ser505. Transfection of a S505A mutant cPLA2α showed that phosphorylation at Ser505 is key for enzyme activity and LD formation. cPLA2α contribution to LD biogenesis was not because of the generation of arachidonic acid, nor was it related to neutral lipid synthesis. cPLA2α inhibition in cells induced to form LD resulted in the appearance of tubulo-vesicular profiles of the smooth endoplasmic reticulum, compatible with a role of cPLA2α in the formation of nascent LD from the endoplasmic reticulum

    Elaboració d'una guia sobre aprenentatge cooperatiu a la Universitat de Girona

    Get PDF
    L’any 2009, l’Institut de Ciències de l’Educació Josep Pallach de la Universitat de Girona va impulsar la creació de diverses Xarxes d’Innovació Docent (XID). Aquestes xarxes agrupen professors de disciplines diverses que volen compartir experiències relatives a la millora docent. Una d’aquestes xarxes és la relativa a l’Aprenentatge Cooperatiu (XIDAC). Es compon de vuit professors que utilitzen aquest mètode d’aprenentatge a la seva docència. Un dels seus objectius és produir una guia o petit manual sobre aprenentatge cooperatiu (AC) a la UdG. Es tracta d’orientar els professors que vulguin posar- lo en pràctica, o que ja ho estiguin fent i necessitin un material de suport. A la present comunicació es descriu el procés d’elaboració d’aquesta guia. En primer lloc, s’exposen característiques de la UdG que poden determinarne en algun sentit el perfil i continguts. Després, es resumeixen els resultats d’entrevistes amb professors que apliquen l’AC tot i no pertànyer a la Xarxa. A continuació, es resumeixen els resultats d’una enquesta elaborada al professorat de la UdG (actualment està en fase de resposta). Amb posterioritat, es fa una presentació general de la futura guia i es descriu breument un exemple de fitxa d’activitat d’AC. Finalment, es fa referència al procés de debat obert de part d’aquests continguts a través d’una pàgina web, per tal de recollir punts de vista externs i millorar la proposta.Peer Reviewe

    Enfermedad neuromuscular oculocraniosomática de Kearns Sayre: a propósito de tres casos

    Get PDF
    Se describen tres pacientes de 9. 7 y 28 años, afectos del síndrome neuromuscular oculocraneosomático de Kearns-Sayre. A dichos enfermos se les ha practicado T.C. cerebral E.R.G.. potenciales evocados visuales, acústicos troncoencefálicos y corticales exploraciones electromiográficas y neurográficas y biópsia muscular con estudios de microscopía óptica y electrónica. Se revisan los criterios clínicos y paraclínicos de esta afección, se comparan con los hallazgos de nuestros pacientes. Se discuten algunos criterios diagnósticos en relación con nuestros pacientes y con los hallazgos de la literatura

    Unraveling the role of protein dynamics in dihydrofolate reductase catalysis

    Get PDF
    Protein dynamics have controversially been proposed to be at the heart of enzyme catalysis, but identification and analysis of dynamical effects in enzyme-catalyzed reactions have proved very challenging. Here, we tackle this question by comparing an enzyme with its heavy (15N, 13C, 2H substituted) counterpart, providing a subtle probe of dynamics. The crucial hydride transfer step of the reaction (the chemical step) occurs more slowly in the heavy enzyme. A combination of experimental results, quantum mechanics/molecular mechanics simulations, and theoretical analyses identify the origins of the observed differences in reactivity. The generally slightly slower reaction in the heavy enzyme reflects differences in environmental coupling to the hydride transfer step. Importantly, the barrier and contribution of quantum tunneling are not affected, indicating no significant role for “promoting motions” in driving tunneling or modulating the barrier. The chemical step is slower in the heavy enzyme because protein motions coupled to the reaction coordinate are slower. The fact that the heavy enzyme is only slightly less active than its light counterpart shows that protein dynamics have a small, but measurable, effect on the chemical reaction rate

    The two-pore channel TPCN2 mediates NAADP-dependent Ca2+-release from lysosomal stores

    Get PDF
    Second messenger-induced Ca2+-release from intracellular stores plays a key role in a multitude of physiological processes. In addition to 1,4,5-inositol trisphosphate (IP3), Ca2+, and cyclic ADP ribose (cADPR) that trigger Ca2+-release from the endoplasmatic reticulum (ER), nicotinic acid adenine dinucleotide phosphate (NAADP) has been identified as a cellular metabolite that mediates Ca2+-release from lysosomal stores. While NAADP-induced Ca2+-release has been found in many tissues and cell types, the molecular identity of the channel(s) conferring this release remained elusive so far. Here, we show that TPCN2, a novel member of the two-pore cation channel family, displays the basic properties of native NAADP-dependent Ca2+-release channels. TPCN2 transcripts are widely expressed in the body and encode a lysosomal protein forming homomers. TPCN2 mediates intracellular Ca2+-release after activation with low-nanomolar concentrations of NAADP while it is desensitized by micromolar concentrations of this second messenger and is insensitive to the NAADP analog nicotinamide adenine dinucleotide phosphate (NADP). Furthermore, TPCN2-mediated Ca2+-release is almost completely abolished when the capacity of lysosomes for storing Ca2+ is pharmacologically blocked. By contrast, TPCN2-specific Ca2+-release is unaffected by emptying ER-based Ca2+ stores. In conclusion, these findings indicate that TPCN2 is a major component of the long-sought lysosomal NAADP-dependent Ca2+-release channel

    The evolution of multiple active site configurations in a designed enzyme

    Get PDF
    Developments in computational chemistry, bioinformatics, and laboratory evolution have facilitated the de novo design and catalytic optimization of enzymes. Besides creating useful catalysts, the generation and iterative improvement of designed enzymes can provide valuable insight into the interplay between the many phenomena that have been suggested to contribute to catalysis. In this work, we follow changes in conformational sampling, electrostatic preorganization, and quantum tunneling along the evolutionary trajectory of a designed Kemp eliminase. We observe that in the Kemp Eliminase KE07, instability of the designed active site leads to the emergence of two additional active site configurations. Evolutionary conformational selection then gradually stabilizes the most efficient configuration, leading to an improved enzyme. This work exemplifies the link between conformational plasticity and evolvability and demonstrates that residues remote from the active sites of enzymes play crucial roles in controlling and shaping the active site for efficient catalysis

    Significant quantum effects in hydrogen activation

    Get PDF
    Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature reveal completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H2 up to ∼190 K and for D2 up to ∼140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation
    corecore