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Abstract Recent experiments have confirmed the impor-
tance of nuclear quantum effects even in large biomolecules
at physiological temperature. Here we describe how the
path integral formalism can be used to describe rigorously
the nuclear quantum effects on equilibrium and kinetic
properties of molecules. Specifically, we explain how path
integrals can be employed to evaluate the equilibrium (EIE)
and kinetic (KIE) isotope effects, and the temperature
dependence of the rate constant. The methodology is
applied to the [1,5] sigmatropic hydrogen shift in penta-
diene. Both the KIE and the temperature dependence of the
rate constant confirm the importance of tunneling and other
nuclear quantum effects as well as of the anharmonicity of
the potential energy surface. Moreover, previous results on
the KIE were improved by using a combination of a high
level electronic structure calculation within the harmonic
approximation with a path integral anharmonicity correc-
tion using a lower level method.

Keywords Anharmonicity effects . Equilibrium isotope
effect . Kinetic isotope effect . Path integral .

Quantum instanton . Rotational-vibrational coupling .
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Introduction

After solving the electronic structure problem, most
molecular modeling simulations treat nuclei as classical
particles. While this often is an appropriate point of view, it
fails completely in some cases, and almost always when
hydrogen is involved in bond breaking or formation. Strong
nuclear quantum effects have been observed in many
reactions and recently even in several enzymatic reactions
[1–3]. In such situations, one should treat some or all nuclei
quantum mechanically. In particular, the nuclear quantum
effects should be considered in the simulation even though
they may be similar for the corresponding reactions in
enzyme and in solution, and therefore may not contribute to
the catalytic effect of the enzyme [4, 5].

Solving the time-dependent Schrödinger equation exact-
ly is of course possible only for a handful of atoms [6].
Luckily, in most chemical reactions, some quantum effects
are at least partially washed out by finite temperature.
Whereas the “real-time” quantum dynamics is extremely
difficult, quantum thermodynamics, or “imaginary-time”
quantum dynamics, can be computed accurately for fairly
large systems using the Feynman path integrals [7, 8].

In general physics, path integrals are mostly known as an
elegant tool to formulate analytical theories in particle
physics and quantum field theory. In chemical physics, the
somewhat abstract path integrals have evolved into an
extremely practical numerical tool [9, 10]. In fact, they are
probably the most successful tool in solving quantum
statistical problems in large systems without symmetry.

In this paper, we describe how path integrals can be used
to compute the equilibrium isotope effects, kinetic isotope
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effects, and the temperature dependence of the reaction rate
constant.

Methodology

Path integral methods

The central quantity in quantum statistical mechanics is the
partition function,

Q bð Þ ¼
X
n

e�b"n ð1Þ

where β = (kBT)
−1 is the inverse temperature and εn is the

energy of the system in the eigenstate n. If the partition
function is known analytically, any thermodynamic quan-
tity can be found, e.g., the thermal energy can be computed
as

E ¼ � @1n Q bð Þ
@b

: ð2Þ

The beauty of path integrals lies in that they allow
computing the partition function without finding the
eigenstates of the Hamiltonian. Let us therefore consider a
molecular system consisting of N atoms with masses mi.
Starting from the exact expression Q(β) = Tr(e−βĤ), one
obtains the path integral (PI) representation of Q as
Q ¼ limP!1QP, with [10]

QP bð Þ ¼ C

Z
drð1Þ � � �

Z
drðPÞ exp �bΦ rðsÞ

n o� �h i
: ð3Þ

Above, C � P
2pH2b

� �3N P=2 Q
N
i¼1m

3P=2
i is a multiplicative

factor, P the number of imaginary time slices, and rðsÞ �
rðsÞ1 ; rðsÞ2 ; . . . ; rðsÞN

� �
the set of Cartesian coordinates associ-

ated with the sth time slice. Finally, Φ({r(s)}) is the effective
potential given by

Φ rðsÞ
n o� �

¼ P

2H2b2
XP
s¼1

XN
i¼1

mi rðsÞi � r s�1ð Þ
i

� �2

þ 1

P

XP
s¼1

V rðsÞ
� �

ð4Þ

with r(0)≡r(P) and {r(s)} representing {r(1), r(2),..., r(P)}.
From expressions (3) and (4) it is obvious that for P=1

one obtains the classical partition function and therefore
classical thermodynamics. The quantum thermodynamics is
obtained in the limit P→∞, but in practice it often suffices
to take a finite value of P to obtain accurate quantum
results.

To compute a thermal average A(β) of a physical
observable A such as the heat capacity or a rate constant,
one starts from the exact quantum expression A bð Þ ¼

Tr bA exp �bbH� �h i.
Q bð Þ or, if possible, from an exact

expression for A(β) in terms of the partition function,
such as Eq. 2 for energy. Using the PI expression (3) for
Q, one ends up with a PI expression for the thermal
average A(β),

A bð Þ ¼ A rðsÞ
n o� �D E

r
; ð5Þ

where <.>ρ denotes a weighted average over PI integral
configurations. The weight is given by r ¼ exp �bΦð Þ and
the quantity A({r(s)}) is called a PI “estimator” for A(β).

The PI average (5) can be evaluated efficiently using PI
molecular dynamics (PIMD) or PI Monte Carlo (PIMC)
techniques [10]. In the calculations presented below, a
PIMD implementation in the molecular dynamics package
Amber 10 [11] was used for the equilibrium isotope effects
while an in-house PIMC code was used for the kinetic
isotope effects and the temperature dependence of the rate
constant.

Up to this point, everything was straightforward. The
interesting twist comes because the estimator A({r(s)}) is
not a unique function of {r(s)}. The art of PIs lies in finding
the optimal estimator in the sense of having the smallest
statistical error for a given number M of samples. As the
statistical error of a simulation is proportional to M−1/2, an
estimator with a smaller statistical error can lead to a much
more efficient simulation.

Equilibrium isotope effects

The first application that we shall consider is the calculation
of the equilibrium isotope effect (EIE), defined as the effect
of isotopic substitution on the equilibrium constant. More
precisely,

EIE ¼ Kl

Kh
; ð6Þ

where K is the equilibrium constant and l (h) denotes the
lighter (heavier) isotope. The equilibrium constant can be
expressed in terms of partition functions as K=Qp/Qr where
subscripts p and r denote the product and reactant,
respectively. Hence the EIE can be computed as

EIE ¼
exp �b

R
1
0dl

dFp lð Þ
dl

h i
exp �b

R
1
0dl

dFr lð Þ
dl

h i ; ð7Þ

where F=−β−1 log Q is the free energy and λ is a parameter
providing a smooth transition between the lighter and
heavier isotopologs [12]. For instance, it can be accom-
plished by a linear interpolation of masses of all atoms in a
molecule according to the equation

mi lð Þ ¼ 1� lð Þmh;i þ lml;i: ð8Þ
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Unlike the partition function or the equilibrium constant K,
the derivative dF/dλ of the free energy can be computed by
a PIMD or PIMC simulation directly, and so the equilib-
rium constant can be computed by the so-called thermody-
namic integration (TI) expressed in Eq. 7. The estimator for
dF/dλ can be found in Ref. [12].

Quantum instanton approximation

Theoretically more challenging quantities than the equilib-
rium constant or EIE are the rate constant or the kinetic
isotope effect (KIE). The reason is that these kinetic
quantities combine quantum thermodynamics with the real-
time quantum dynamics. However, since the most interesting
chemical reactions occur at a thermodynamically relatively
high temperature, there exist suitable approximations.

A recent and accurate approximation which takes into
account most quantum effects is the so-called quantum
instanton (QI) approximation of Miller and coworkers
[13]. In this approximation, the rate constant is expressed
as

kQI bð Þ ¼
ffiffiffi
p

p
2

H
ΔH

Cff 0ð Þ
Qr

; ð9Þ

where Cff(t) is the flux-flux correlation function, Qr the
reactant partition function, and ΔH a certain energy
variance near the transition state.

Kinetic isotope effects

The kinetic isotope effect is defined as the effect of isotopic
substitution on the rate constant,

KIE ¼ kl
kh

: ð10Þ

This KIE is widely used in chemical kinetics to detect
nuclear tunneling and other quantum effects, as well as to
distinguish between possible reaction mechanisms. Unlike
the rate constant itself, the KIE depends very little on the
classical energy barrier height, and so the KIE can separate
various effects from the simple exponential dependence on
the barrier that overwhelms the rate constant. Using the QI
expression (9), the KIE can be expressed as [14]

KIE ¼Qr;h

Qr;l

ΔHh

ΔHl

Cdd;lð0Þ
Cdd;h 0ð Þ

Cff ;lð0Þ
Cdd;lð0Þ
Cff ;hð0Þ
Cdd;hð0Þ

; ð11Þ

where the delta-delta correlation function Cdd(t) was
introduced. This correlation function at time t=0 is a
generalization of the partition function, constrained to two
dividing surfaces. Introduction of Cdd into expression (11)
simplifies the calculation: On one hand, similarly to ΔH the

flux factor Cff (0)/Cdd(0) can be computed directly in a
single PIMC or PIMD simulation [15]. On the other hand,
the ratio Cdd,l(0)/Cdd,h(0) can be computed by a TI
analogous to Eq. 7. The estimators can be found in Refs.
[14, 16, 17].

It should be noted that several other PI approaches to
compute the KIE exist, which are however not based on the
QI. These include, e.g., approaches based on other quantum
transition state theories [18, 19] or on the quantized
classical path method [5, 20, 21].

Temperature dependence of the rate constant

The last application that we shall consider is the direct
evaluation of the temperature dependence of the rate
constant, i.e., of the ratio k(T)/k(T0). Again, this quantity
is extremely useful in kinetics because it can help to discern
between plausible mechanisms of a reaction and because
the ratio is easier to measure accurately than the rate
constant itself.

In the framework of the QI approximation, the T
dependence can be evaluated as [22]:

kQI bð Þ
kQI b0ð Þ ¼

Qr b0ð Þ
Qr bð Þ

ΔH b0ð Þ
ΔH bð Þ

Cdd bð Þ
Cdd b0ð Þ

Cff bð Þ
Cdd bð Þ
Cff b0ð Þ
Cdd b0ð Þ

: ð12Þ

The flux and energy variance are computed as for the
KIEs, but the ratios of the partition functions and of the
delta-delta correlation functions use a different type of TI,
namely a TI with respect to the inverse temperature β [22,
23]. Taking advantage of the relations

Er bð Þ ¼ � d logQr bð Þ
db

and ð13Þ

Ez bð Þ ¼ � d logCdd bð Þ
db

ð14Þ

between the reactant and transition state energies and the
logarithmic derivatives of Qr and Cdd, one can compute the
ratios of Qs and Cdds as

Qr bð Þ
Qr b0ð Þ ¼ exp �

Z b

b0

Er
eb� �

deb" #
; ð15Þ

Cdd bð Þ
Cdd b0ð Þ ¼ exp �

Z b

b0

Ez eb� �
deb" #

: ð16Þ

The estimators for the reactant energy Er are well-known
for PIMD simulations [24–26]. Estimators for the transition
state energy E‡ were developed in Ref. [22] for several
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types of constraints. These estimators are derived in a
similar manner, based on the rescaling of coordinates and a
finite difference evaluation of the derivative with respect to
β that was used for the first time by Predescu and
coworkers for reactant energies and heat capacities [27].
The statistical error of these estimators showed a surprising
behavior in comparison with the estimators for Er. In
particular, the centroid virial estimator was not always the
optimal estimator [22]. Below we use estimators from Ref.
[22] for both Er and E‡ because they are suitable for a
PIMC simulation.

Computational details

Equilibrium isotope effects

To compute the EIE, ratios of partition functions corres-
ponding to different isotopologs of reactants and products
have to be computed. Unfortunately, higher level ab initio
electronic structure methods are usually too expensive to be
used in the PI calculation directly. On the other hand,
semiempirical or force field methods generally do not
achieve comparable accuracy. To take advantage of both the
accuracy of ab initio methods and the rigor of PI treatment
of nuclear motion, we combine the value of the EIE
obtained in the harmonic approximation (HA) using a
higher level method with the anharmonicity correction,
rigorously computed with the PIMD method, using a lower
level method. The anharmonicity correction is calculated as

ΔΔFanharm ¼ ΔF red
PI �ΔF red

HA; ð17Þ
where ΔF red

PI and ΔF red
HA are the free energy differences

computed with the PI method and the HA, respectively. The
HA value of ΔFred is obtained by Boltzmann averaging over
all possible distinguishable conformations,

ΔF red
HA ¼ �kBT1n

sr
PNp

i¼1 exp �Eel
i

kBT

� �Psp
j¼1 Q

nuc
p;ij

n o
sp
PNr

i¼1 exp
�Eel

i
kBT

� �Psr
j¼1 Q

nuc
r;ij

n o
24 35;

ð18Þ

where Nr is the number of “geometrically different isomers”
of the reactant. By geometrically different isomers we mean
species differing in their geometry, not species differing
only in positions of isotopically substituted atoms. Eel

i is the
electronic energy (including nuclear repulsion) of the ith

isomer, sr is the symmetry factor, which can arise from the
change of the wave function due to the effects of
indistinguishability of particles during isotopic substitution.
Finally, Qnuc

r;ij are partition functions of the nuclear motion of
sr isotopomers. Np, sp, Qnuc

p;ij denote analogous quantities for
the product.

Since in our approximation the electronic function does
not change after isotopic substitution, the EIE is dominated
by vibrational contributions. Therefore, we searched for an
optimal electronic structure method among those studied by
Merrick et al. [28], who tested the performance of several
higher level methods by comparison of the computed
vibrational frequencies in the HA with experimental data
for a set of 39 molecules. The B98/6–311+(2df,p) method,
which we chose, has the root mean square error (RMSE) of
the zero point energy (ZPE) equal to 0.31 kJ · mol−1 and
RMSEs of frequencies 31 cm−1. The lower level method
used to compute the PI anharmonicity corrections was the
AM1 semiempirical method [29], which, in the HA,
reproduces the B98/6–311+(2df,p) results very well.

Since the value of the EIE is expected to be close to unity,
we have chosen a relatively high number of imaginary time
slices P=40 in the discretized path integral. The TI was
performed with Simpson’s rule using five values of λ. As the
dependence of the PIMD average of dF/dλ is almost linear
over the full range of λ, five points were sufficient to get a
converged result for the integral. For further details about the
method, see Ref. [12].

Kinetic isotope effects

The ratio of partition functions needed for the KIE was
computed in the same manner as the ratio for the EIE, with
the exception that the number of imaginary time slices was
set to P=24. Other terms in the Eq. 11 were computed with
the PIMC method using the empirical valence bond (EVB)
potential [30, 31], which allows the molecular mechanics
potential to be fitted to match the B98/6–311+(2df,p)
reaction barrier and Hessian at the transition state [32].

The EVB potential is computed as:

VEVB ¼ 1

2
V11 þ V22ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V12j j2 þ V11 � V22

2

� �2
s

; ð19Þ

where V11 and V22 are the molecular mechanics potential
energies of the reactant and product, respectively. These are
the diabatic potentials and the diagonal terms in the
symmetric 2×2 EVB matrix. In our calculations, they were
obtained with the general AMBER force field (GAFF) [33].
The off-diagonal term V12, i.e., the coupling between the
two diabatic states, was calculated according to the formula
of Schlegel and Sonnenberg [34]:

V12 rð Þ ¼ A 1þ B�ΔrþΔr� Cþ aIð Þ�Δr
� �

� exp �a Δrj j2 2
. �

:
�

ð20Þ

The constants A, B, and C are chosen to match the
barrier height and the Hessian of the ab initio potential at
the transition state.
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Temperature dependence of the rate constant

A similar procedure as for the KIE was used to
compute the temperature dependence of the rate con-
stant. Since the major contribution to the temperature
dependence of the rate constant is due to the reaction
barrier height, we computed the barrier height also by
the single point coupled clusters CCSD(T)/cc-pVTZ and
CCSD/aug-cc-pVTZ calculations on B98/6–311+(2df,p)
geometries.

In the PI calculation of the temperature dependence of
the rate constant, several approaches were used to compute
the ratio of reactant partition functions at different temper-
atures. In the first approach, denoted “QI GAFF(PIMC)”,
the ratio of the reactant partition functions was computed
directly in the PIMC simulation with the GAFF force field.
This could possibly cause a difficulty because in the EVB
method, the Hessian of potential energy surface at the
transition state is fitted to the much more accurate B98/6–
311+(2df,p) Hessian. At this point, the fitted surface has
B98/6–311+(2df,p) properties in the HA, with the anhar-
monicity given by a nonlinear combination of the GAFF
force fields describing the reactant and product. Therefore,
a systematic error could arise due to the different properties
of the B98 and GAFF surfaces in the HA. Fortunately, the
harmonic vibrational free energy computed using the GAFF
force field is only about 0.5 kcal/mol lower than the B98/6–
311+(2df,p) value. Consequently, the results obtained with
the QI GAFF(PIMC) method are almost equal to the “QI
B98(HA) GAFF(PIMC) anharm.” results, obtained by
augmenting the B98/6–311+(2df,p) free energies in the
HA with the anharmonicity PIMC correction computed
with the GAFF force field. The “QI B98(HA)” method uses
only plain B98/6–311+(2df,p) free energies in the HA.
Finally, probably the most accurate “QI B98(HA) AM1
(PIMC) anharm.” method uses the B98/6–311+(2df,p) free
energies in the HAwith the PIMC anharmonicity correction
computed with the AM1 semiempirical potential.

Used software

All PIMD calculations were performed in Amber 10 [11].
The ab initio and B98 calculations as well as AM1
semiempirical calculations in the HA were done in
Gaussian 03 revision E01 [35]. All PIMC calculations were
done using a PIMC code developed by one of us.

Results

In this section, the path integral formalism is applied to
study the [1,5] sigmatropic hydrogen shift reaction in the
(3Z)-penta-1,3-diene. Two isotopologs of (3Z)-penta-1,3-

diene are considered: tri-deuterated (3Z)-(5,5,5-2H3)penta-
1,3-diene (1-5,5,5-d3) and di-deuterated (3Z)-(1,1-2H2)
penta-1,3-diene (1-1,1-d2) (see Fig. 1). Both isotopologs
were used by Roth and König in their experimental study of
the KIE in the [1,5] sigmatropic hydrogen shift reaction
[36]. The value of the KIE obtained by Roth and König was
too high to be explained classically implying that quantum
effects such as tunneling are important in this reaction.
Here, we examine both the EIE and KIE for this reaction as
well as the temperature dependence of the rate constant in
the range studied in the experimental work [36].

Equilibrium isotope effects

The EIE for both steps of the [1,5] sigmatropic hydrogen
shift reaction is computed according to Eq. 7 and listed in
Table 1. We have already computed the equilibrium ratios
for both isotopologs in Ref. [12]. For the convenience of
the reader, Table 1 also shows these ratios.

The precision of the experimental ratios of Roth and König
is only to a single significant digit, so it reflects only the ratios
caused by the symmetry effects and does not allow for a
rigorous comparison with the computed EIE. Nevertheless, in
Ref. [12] we were able to use the same methodology to
compare the theoretical and experimental equilibrium ratios
for a related compound (2,4,6,7,9-pentamethyl-5-methylene-
11,11a-dihydro-12H-naphthacene).

As the experimental data of Doering et al. [37] were
more accurate, a more rigorous test was possible, and led to
the conclusion that the current methodology can reproduce
quantitatively the equilibrium ratios beyond the symmetry
effects. The value of the EIE for the first reaction step is
greater than unity, meaning that the equilibrium of the first
step reaction is shifted toward the product side for the
lighter isotopolog 1-1,1-d2 (where hydrogen is transferred)
in comparison with the heavier 1-5,5,5-d3 (where the
transferred atom is deuterium). In the second step, the EIE
is smaller than unity so the products are favored for the
heavier isotopolog. Also, in contrast to the first step,
hydrogen is transferred in the heavier isotopolog and
deuterium in the lighter one.

Kinetic isotope effects

Computed values of the KIE on the first reaction step are
shown in Fig. 2 and Table 2. This KIE is defined as the
ratio

KIE ¼ k 1�1; 1�d2 !1�5; 5�d2ð Þ
k 1�5; 5; 5�d3 !1�1; 1; 5�d3ð Þ : ð21Þ

As can be seen from the table, the calculated and
experimental data agree very well; the largest relative
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difference is around 5%. Comparison with the transition state
theory (TST) values, computed using the B98/6–311+(2df,p)
barrier height and the partition functions in the HA (for
reactants computed according to Eq. 18), clearly demon-
strates the importance of quantum effects on the KIE.
(Note that in TST the value of the KIE is actually inde-
pendent of the barrier height). The third column of the
table contains the KIE computed in Ref. [17], where the
same PI method was used, but the barrier height and
the Hessian of the transition state were fitted to MP2/6–
31g(d) ab initio data. In addition, the GAFF force field
[33] was used not only for the EVB potential but also for the
reactant partition functions. Our results and results from Ref.
[17] differ by at most 10% of the KIE value. The main
improvement in comparison with Ref. [17] occurs at higher
temperatures. However, the observed difference is not only
due to the use of different methods, but partially also due to
the way the EVB potential surface is constructed. As
discussed in Ref. [17], the results are weakly dependent on
the value of α in Eq. 20, and even though a flat plateau is
obtained for a broad range of α values, varying α still can
change the KIE by about 10%. Generally, the optimal value
of the parameter α can be different for different ab initio
methods. Here we have intentionally chosen the same value

of α=0.9 as in Ref. [17]. As the final results are still fairly
close and both agree well with the experimental value, this
demonstrates the relative robustness of the method once a
proper value ofα is chosen. In order to achieve an even higher
accuracy and to remove a certain level of arbitrariness
connected with the parameter α, one can use, e.g., the
distributed gaussian method [34]. In this method, the EVB
potential is fitted to match the Hessian of an ab initio
potential at several points in the transition state region.

Temperature dependence of the rate constant

In contrast to the KIE which is virtually independent of the
barrier height, the rate constant depends on the barrier
height exponentially. Very accurate value of the barrier
height is therefore essential for the calculation of this
quantity or its temperature dependence. Table 3 contains
barrier heights, relative energies of trans and gauche
isomers of (3Z)-penta-1,3-diene, and TST values of the
rate constant kTSTd2

for the 1-1,1-d2 → 1-5,5-d2, hydrogen
shift computed at three different levels of theory using B98/
6–311+(2df,p) optimized geometries. As can be seen from
the table, the B98/6–311+(2df,p) barrier is the lowest one,
in accordance with the well known fact that barrier heights

Table 1 Values of the EIE on the first (K1) and second (K2 ) step of the reactions from Fig. 1 at 478.45 K

EIE EIE1 ¼ K1 d2ð Þ=K1 d3ð Þ EIE2 ¼ K2 d2ð Þ=K2 d3ð Þ

AM1 (PIMD) 1.07 0.96

B98 (HA)+AM1 (PIMD) anharm. 1.12 0.95

Equilibrium fraction 1-5,5,5-d3 1-1,1,5-d3 1-1,5,5-d3
AM1 (PIMD) 0.103 0.296 0.601

B98 (HA)+AM1 (PIMD) anharm. 0.104 0.293 0.602

Equilibrium fraction 1-1,1-d2 1-5,5-d2 1-1,5-d2
AM1 (PIMD) 0.099 0.305 0.597

B98 (HA)+AM1 (PIMD) anharm. 0.097 0.307 0.596

Results denoted by AM1 (PIMD) were obtained with a PIMD calculation using the AM1 semiempirical method. Results denoted by B98 (HA) +
AM1 (PIMD) anharm. were obtained using the B98 method in the harmonic approximation together with the anharmonicity correction computed
with the AM1 method. For reference, the bottom six rows show the equilibrium fractions of all isotopomers occurring in the reactions from Fig. 1

Fig. 1 The [1,5] hydrogen shift
reaction in (3Z)-(5,5,5−2H3)
penta-1,3-diene (1-5,5,5-d3) and
in (3Z)-(1,1−2H2)penta-1,
3-diene (1-1,1-d2). If all contri-
butions except for those due
to symmetry factors were
neglected, one would obtain
approximate equilibrium con-
stants K1=3 for the first reaction
step and K2=2 for the second
step (in both cases)

1784 J Mol Model (2010) 16:1779–1787



are usually underestimated by the majority of currently
used density functional methods (including B98) [38].
Besides B98, two other and generally more accurate
methods used were the CCSD(T) method with the cc-
pVTZ basis set and the CCSD method without triples
correction but with the substantially larger aug-cc-pVTZ
basis set. The difference between these two methods is still
almost 3 kcal/mol but at this point it is hard to decide which
method is actually closer to the real height of the barrier.

The TST rate constants listed in Table 3 were computed
using the B98/6–311+(2df,p) partition functions in the HA
together with the barrier height of the method considered.
Neglecting the effect of barrier recrossing and the
anharmonicity of the potential energy surface, the TST
rate constant should be smaller than the experimental one,
because the TST ignores the tunneling contribution that is

quite important in this reaction (as demonstrated by the
large value of the KIE). As a consequence, comparison of
kTSTd2

with the experimental rate constant suggests that both
the CCSD(T)/cc-pVTZ and especially the B98/6–311+(2df,
p) methods give too low barriers (ignoring the error coming
from B98 force constants). The TST rate constant computed
with the CCSD/aug-cc-pVTZ barrier, on the other hand,
agrees quite well with the theoretical expectations.

The QI method provides several theoretical improvements
over the TST: Most importantly, unlike the TST, the QI
approximation includes tunneling and other quantum effects.
Moreover, its PI implementation facilitates the calculation of
the anharmonicity effects on the partition functions and delta-
delta correlation functions. Methods used to include the
anharmonicity correction to the B98/6–311+(2df,p) harmonic
ratios are described in the Computational details. The
temperature dependence of the QI rate constant with the
CCSD/aug-cc-pVTZ barrier is shown in Fig. 3.

As can be seen in Fig. 3, both the QI and TST results
agree well with the relatively broad and imprecise experi-
mental temperature dependence. Neglecting again the
recrossing and anharmonicity effects, one can expect that
the value of kTSTd2

will be smaller than the value of kQId2
,

mainly due to the tunneling contribution to the rate that is
captured by kQId2

but gnored in kTSTd2
. Moreover, as the relative

importance of the tunneling increases with the decreasing
temperature, the temperature dependence of the kQId2

should
be weaker than the dependence of kTSTd2

. Figure 3 shows that
this is indeed true. (The temperature dependence of the
relative importance of tunneling and of other nuclear
quantum effects can be sometimes more complicated due
to other effects such as the temperature dependence of the
distance between the donor and acceptor [21].)

Another interesting feature visible in the graph is the
importance of the anharmonicity correction, which shows that
the change in the temperature dependence caused by the
anharmonicity can be equivalent to the change of the reaction
barrier by several kcal/mol. It is reassuring that the more
accurate AM1 correction influences the result more than the
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Fig. 2 The KIE on the first [1,5] hydrogen shift reaction from Fig. 1.
The displayed KIE is defined precisely in Eq. 21 of the text. The curve
marked as expa denotes the raw experimental data from Ref. [36]
whereas expb denotes the data computed from an Arrhenius fit in Ref.
[36]

Table 2 The KIE on the first [1,5] hydrogen shift reaction from
Fig. 1. The displayed KIE is defined precisely in Eq. 21 of the text.
The column denoted by expa contains the raw experimental data from
Ref. [36] whereas the column expb contains the data computed from
an Arrhenius fit in Ref. [36]

T (K) QI TST QI/MP2;GAFF expa expb

463.25 5.5 2.7 5.4 – 5.3

468.25 – 2.7 – 5.2 –

470.0 5.3 2.7 5.3 – 5.2

473.15 – 2.6 – 5.0 –

478.45 5.1 2.6 5.1 5.1 5.0

500.0 4.7 2.5 4.3 – 4.7

a Ref. [36]
b Ref. [36]

Table 3 The barrier height Δ"z ¼ "z � "transr measured from the
trans conformer (3Z)-penta-1,3-diene which is the global minimum,
the energy difference Δ"g�t ¼ "gaucher � "transr between trans and
gauche conformers, and the TST rate constant kTSTd2

of the [1,5]
hydrogen shift reaction 1-1,1-d2 → 1-5,5-d2

B98/6–311+
(2df,p)

CCSD(T)/
cc-pVTZ

CCSD/aug-
cc-pVTZ

expa

Δε‡(kcal/mol) 37.3 39.9 42.8

Δεg-t(kcal/mol) 3.6 3.0 2.0

kTSTd2
� 10�6 s�1ð Þ

478:45 K½ �
364.6 27.8 2.8 77.1

a Ref. [36]
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correction computed using the GAFF force field. This
observation agrees well with the expectations based on the
fact that in the GAFF force field the bond stretching
coordinates are actually harmonic and the anharmonicity is
caused only by other terms of the force field. Nevertheless,
both corrections decrease the HA free energy of nuclear
motion through the lowering of the ZPE. Finally, the curves of
the relative rate constant in the Arrhenius plot are almost
exactly straight lines, irrespective of the theoretical method
used. This suggests that it would be very hard to observe any
non-Arrhenius behavior in this small temperature range even
with a far more precise experimental setup.

The temperature dependence of kd2 computed with the
CCSD(T)/cc-pVTZ barrier height is shown in Fig. 4. With

this barrier, the temperature dependence of the more
accurate QI method is only very slightly weaker than the
experimental dependence, whereas the TST rate depen-
dence is still within the range of the experimental values.
However, this apparently excellent agreement of the
conventional TST with the experiment is most likely due
to the cancellation of the tunneling and anharmonicity
corrections. All the other characteristics of the graph are the
same as with the CCSD/aug-cc-pVTZ barrier. When the
lowest and probably the least accurate B98/6–311+(2df,p)
barrier is used, curves for all methods stay above the
experimental data in the Arrhenius plot.

Conclusions

We have applied a general path integral methodology for
computing the EIE, KIE, and the temperature dependence
of the rate constant to the [1,5] sigmatropic hydrogen shift
in pentadiene. In the case of the EIE, the computed result
has a higher precision than the experiment [36], therefore
our result can be considered as a prediction of the deviation
of the exact EIE from the symmetry determined EIE. In
case of the KIE, the accuracy of the previous result [17]
was improved by using a combination of a high level
electronic structure calculation within the harmonic approx-
imation with a path integral anharmonicity correction using
a lower level method. Finally, the result for the temperature
dependence of the rate constant is the first application of the
methodology from Ref. [22] to a molecule with more than
three atoms. As for the KIE, the temperature dependence
confirms the importance of tunneling and anharmonicity
effects. However, unlike for the KIE, the accuracy of the
energy barrier plays an important role and therefore a high
level method is required. According to our results, the
CCSD/aug-cc-pVDZ barrier height of 42.8 kcal/mol seems
to be the most accurate.

While we have considered a gas phase molecule with 13
atoms, significantly larger systems can be treated by the
presented PI approach since only the light atoms partici-
pating in the reaction require a large number P of replicas.
Heavier atoms or atoms less important in a given problem
(e.g., atoms far from the active site of an enzyme) can be
treated either with a small value of P or fully classically
(i.e., with P = 1). The efficiency will then be dominated by
the cost of an accurate potential energy for which various
strategies are known already from classical molecular
dynamics. Among these are the recent implementations
(see, e.g., Ref. [39]) of polarizable force fields [40, 41] or
the accelerated sampling using hybrid quantum-mechanical/
molecular-mechanical potentials [42]. A combination of
such techniques with the methodology described in this
paper will be the subject of future applications.
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