155 research outputs found

    Educar en empatía a niños de 0 a 6 años

    Get PDF
    La etapa de Educación infantil se constituye como un período clave ya que en ella se sientan las bases de todo el aprendizaje posterior del individuo. El fin principal de esta etapa educativa es favorecer no sólo el desarrollo físico e intelectual del niño sino también su desarrollo afectivo y social. Teniendo en cuenta este fin, el presente trabajo refleja la importancia de educar la capacidad empática de los niños de 0 a 6 años. Para ello, se aborda un estudio sobre las perspectivas teóricas expuestas por diferentes autores sobre el concepto de “empatía”. Una vez aclarado, se describe el desarrollo evolutivo de esta capacidad desde prácticamente el nacimiento del niño hasta los 6 años de edad. Dado que a estas edades la familia y la escuela se erigen como los contextos básicos de aprendizaje por parte del niño, se recalca la importancia de que padres y maestros eduquen en empatía a los más pequeños. Palabras clave: empatía, niño, emociones, sentir, Educación infantil, comprender, capacidad empática, sentimientos, aula, infancia

    Photoelectric cross-sections of gas and dust in protoplanetary disks

    Full text link
    We provide simple polynomial fits to the X-ray photoelectric cross-sections (0.03 < E < 10keV) for mixtures of gas and dust found in protoplanetary disks. Using the solar elemental abundances of Asplund et al. (2009) we treat the gas and dust components separately, facilitating the further exploration evolutionary processes such as grain settling and gain growth. We find that blanketing due to advanced grain-growth (a_max > 1 micron) can reduce the X-ray opacity of dust appreciably at E_X ~ 1keV, coincident with the peak of typical T Tauri X-ray spectra. However, the reduction of dust opacity by dust settling, which is known to occur in protoplanetary disks, is probably a more significant effect. The absorption of 1-10keV X-rays is dominated by gas opacity once the dust abundance has been reduced to about 1% of its diffuse interstellar value. The gas disk establishes a floor to the opacity at which point X-ray transport becomes insensitive to further dust evolution. Our choice of fitting function follows that of Morrison & McCammon (1983), providing a degree of backward-compatibility.Comment: 34 pages, 7 figures. To be published in in Ap

    Resistive double-diffusive instability in the dead-zones of protostellar disks

    Full text link
    We outline a novel linear instability that may arise in the dead-zones of protostellar disks, and possibly the fluid interiors of planets and protoplanets. In essence it is an axisymmetric buoyancy instability, but one that would not be present in a purely hydrodynamical gas. The necessary ingredients for growth include a negative radial entropy gradient (of any magnitude), weak magnetic fields, and efficient resistive diffusion (in comparison with thermal diffusion). The character of the instability is local, axisymmetric, and double-diffusive, and it attacks lengths much shorter than the resistive scale. Like the axisymmetric convective instability, it draws its energy from the negative radial entropy gradient; but by utilising the diffusing magnetic field, it can negate the stabilising influence of rotation. Its nonlinear saturated state, while not transporting appreciable angular momentum, could drive radial and vertical mixing, which may influence the temperature structure of the disk, dust dynamics and, potentially, planet formation.Comment: 16 pages, 5 figures. MNRAS Accepted. V2: cosmetic changes to bring in line with MNRAS versio

    Neon Fine-Structure Line Emission By X-ray Irradiated Protoplanetary Disks

    Get PDF
    Using a thermal-chemical model for the generic T-Tauri disk of D'Alessio et al. (1999), we estimate the strength of the fine-structure emission lines of NeII and NeIII at 12.81 and 15.55 microns that arise from the warm atmosphere of the disk exposed to hard stellar X-rays. The Ne ions are produced by the absorption of keV X-rays from the K shell of neutral Ne, followed by the Auger ejection of several additional electrons. The recombination cascade of the Ne ions is slow because of weak charge transfer with atomic hydrogen in the case of Ne2+ and by essentially no charge transfer for Ne+. For a distance of 140pc, the 12.81 micron line of Ne II has a flux of 1e-14 erg/cm2s, which should be observable with the Spitzer Infrared Spectrometer and suitable ground based instrumentation. The detection of these fine-structure lines would clearly demonstrate the effects of X-rays on the physical and chemical properties of the disks of young stellar objects and provide a diagnostic of the warm gas in protoplanetary disk atmospheres. They would complement the observed H2 and CO emission by probing vertical heights above the molecular transition layer and larger radial distances that include the location of terrestrial and giant planets.Comment: 24 pages, 5 figure

    Essential role of the Cdk2 activator RingoA in meiotic telomere tethering to the nuclear envelope

    Get PDF
    Cyclin-dependent kinases (CDKs) play key roles in cell cycle regulation. Genetic analysis in mice has revealed an essential role for Cdk2 in meiosis, which renders Cdk2 knockout (KO) mice sterile. Here we show that mice deficient in RingoA, an atypical activator of Cdk1 and Cdk2 that has no amino acid sequence homology to cyclins, are sterile and display meiotic defects virtually identical to those observed in Cdk2 KO mice including non-homologous chromosome pairing, unrepaired double-strand breaks, undetectable sex-body and pachytene arrest. Interestingly, RingoA is required for Cdk2 targeting to telomeres and RingoA KO spermatocytes display severely affected telomere tethering as well as impaired distribution of Sun1, a protein essential for the attachment of telomeres to the nuclear envelope. Our results identify RingoA as an important activator of Cdk2 at meiotic telomeres, and provide genetic evidence for a physiological function of mammalian Cdk2 that is not dependent on cyclins

    Dust amorphization in protoplanetary disks

    Full text link
    High-energy irradiation of the circumstellar material might impact the structure and the composition of a protoplanetary disk and hence the process of planet formation. In this paper, we present a study on the possible influence of the stellar irradiation, indicated by X-ray emission, on the crystalline structure of the circumstellar dust. The dust crystallinity is measured for 42 class II T Tauri stars in the Taurus star-forming region using a decomposition fit of the 10 micron silicate feature, measured with the Spitzer IRS instrument. Since the sample includes objects with disks of various evolutionary stages, we further confine the target selection, using the age of the objects as a selection parameter. We correlate the X-ray luminosity and the X-ray hardness of the central object with the crystalline mass fraction of the circumstellar dust and find a significant anti-correlation for 20 objects within an age range of approx. 1 to 4.5 Myr. We postulate that X-rays represent the stellar activity and consequently the energetic ions of the stellar winds which interact with the circumstellar disk. We show that the fluxes around 1 AU and ion energies of the present solar wind are sufficient to amorphize the upper layer of dust grains very efficiently, leading to an observable reduction of the crystalline mass fraction of the circumstellar, sub-micron sized dust. This effect could also erase other relations between crystallinity and disk/star parameters such as age or spectral type.Comment: accepted for publication by A&

    A Spitzer survey of mid-infrared molecular emission from protoplanetary disks I: Detection rates

    Get PDF
    We present a Spitzer InfraRed Spectrometer search for 10-36 micron molecular emission from a large sample of protoplanetary disks, including lines from H2O, OH, C2H2, HCN and CO2. This paper describes the sample and data processing and derives the detection rate of mid-infrared molecular emission as a function of stellar mass. The sample covers a range of spectral type from early M to A, and is supplemented by archival spectra of disks around A and B stars. It is drawn from a variety of nearby star forming regions, including Ophiuchus, Lupus and Chamaeleon. In total, we identify 22 T Tauri stars with strong mid-infrared H2O emission. Integrated water line luminosities, where water vapor is detected, range from 5x10^-4 to 9x10^-3 Lsun, likely making water the dominant line coolant of inner disk surfaces in classical T Tauri stars. None of the 5 transitional disks in the sample show detectable gaseous molecular emission with Spitzer upper limits at the 1% level in terms of line-to-continuum ratios (apart from H2). We find a strong dependence on detection rate with spectral type; no disks around our sample of 25 A and B stars were found to exhibit water emission, down to 1-2% line-to-continuum ratios, in the mid-infrared, while almost 2/3 of the disks around K stars show sufficiently intense water emission to be detected by Spitzer. Some Herbig Ae/Be stars show tentative H2O/OH emission features beyond 20 micron at the 1-2 level, however, and one of them shows CO2 in emission. We argue that the observed differences between T Tauri disks and Herbig Ae/Be disks is due to a difference in excitation and/or chemistry depending on spectral type and suggest that photochemistry may be playing an important role in the observable characteristics of mid-infrared molecular line emission from protoplanetary disks.Comment: 19 pages, accepted for publication in Ap

    Empirical Constraints on Turbulence in Protoplanetary Accretion Disks

    Full text link
    We present arcsecond-scale Submillimeter Array observations of the CO(3-2) line emission from the disks around the young stars HD 163296 and TW Hya at a spectral resolution of 44 m/s. These observations probe below the ~100 m/s turbulent linewidth inferred from lower-resolution observations, and allow us to place constraints on the turbulent linewidth in the disk atmospheres. We reproduce the observed CO(3-2) emission using two physical models of disk structure: (1) a power-law temperature distribution with a tapered density distribution following a simple functional form for an evolving accretion disk, and (2) the radiative transfer models developed by D'Alessio et al. that can reproduce the dust emission probed by the spectral energy distribution. Both types of models yield a low upper limit on the turbulent linewidth (Doppler b-parameter) in the TW Hya system (<40 m/s), and a tentative (3-sigma) detection of a ~300 m/s turbulent linewidth in the upper layers of the HD 163296 disk. These correspond to roughly <10% and 40% of the sound speed at size scales commensurate with the resolution of the data. The derived linewidths imply a turbulent viscosity coefficient, alpha, of order 0.01 and provide observational support for theoretical predictions of subsonic turbulence in protoplanetary accretion disks.Comment: 18 pages, 9 figures, accepted for publication in Ap
    corecore