233 research outputs found

    Impaired delayed but preserved immediate grasping in a neglect patient with parieto-occipital lesions

    Get PDF
    Patients with optic ataxia, a deficit in visually guided action, paradoxically improve when pantomiming an action towards memorized stimuli. Visual form agnosic patient D.F. shows the exact opposite pattern of results: although being able to grasp objects in real-time she loses grip scaling when grasping an object from memory. Here we explored the dissociation between immediate and delayed grasping in a patient (F.S.) who after a parietal-occipital stroke presented with severe left visual neglect, a loss of awareness of the contralesional side of space. Although F.S. had preserved grip scaling even in his neglected field, he was markedly impaired when asked to pretend to grasp a leftward object from memory. Critically, his deficit cannot be simply explained by the absence of continuous on-line visual feedback, as F.S. was also able to grasp leftward objects in real-time when vision was removed. We suggest that regions surrounding the parietal-occipital sulcus, typically damaged in patients with optic ataxia but spared in F.S., seem to be essential for real-time actions. On the other hand, our data indicates that regions in the ventral visual stream, damaged in D.F but intact in F.S., would appear to be necessary but not sufficient for memory-guided action

    Automatic correction of hand pointing in stereoscopic depth

    Get PDF
    In order to examine whether stereoscopic depth information could drive fast automatic correction of hand pointing, an experiment was designed in a 3D visual environment in which participants were asked to point to a target at different stereoscopic depths as quickly and accurately as possible within a limited time window (≤300 ms). The experiment consisted of two tasks: "depthGO" in which participants were asked to point to the new target position if the target jumped, and "depthSTOP" in which participants were instructed to abort their ongoing movements after the target jumped. The depth jump was designed to occur in 20% of the trials in both tasks. Results showed that fast automatic correction of hand movements could be driven by stereoscopic depth to occur in as early as 190 ms.This work was supported by the Grants from the National Natural Science Foundation of China (60970062 and 61173116) and the Doctoral Fund of Ministry of Education of China (20110072110014)

    Glucanocellulosic ethanol: The undiscovered biofuel potential in energy crops and marine biomass

    Get PDF
    Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions

    Construction of a map-based reference genome sequence for barley, Hordeum vulgare L.

    Get PDF
    Barley (Hordeum vulgare L.) is a cereal grass mainly used as animal fodder and raw material for the malting industry. The map-based reference genome sequence of barley cv. `Morex' was constructed by the International Barley Genome Sequencing Consortium (IBSC) using hierarchical shotgun sequencing. Here, we report the experimental and computational procedures to (i) sequence and assemble more than 80,000 bacterial artificial chromosome (BAC) clones along the minimum tiling path of a genome-wide physical map, (ii) find and validate overlaps between adjacent BACs, (iii) construct 4,265 non-redundant sequence scaffolds representing clusters of overlapping BACs, and (iv) order and orient these BAC clusters along the seven barley chromosomes using positional information provided by dense genetic maps, an optical map and chromosome conformation capture sequencing (Hi-C). Integrative access to these sequence and mapping resources is provided by the barley genome explorer (BARLEX).Peer reviewe

    Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley

    Get PDF
    The cereal grass barley was domesticated about 10,000 years ago in the Fertile Crescent and became a founder crop of Neolithic agriculture. Here, we report genome sequences of five 6,000-year-old barley grains excavated at a cave in the Judean Desert close to the Dead Sea. Comparison to whole exome sequence data from a diversity panel of present-day barley accessions revealed the close affinity of ancient samples to extant landraces from the Southern Levant and Egypt, consistent with a proposed origin of domesticated barley in the Upper Jordan Valley. Our findings suggest that barley landraces grown in present-day Israel in the past six millennia have not experienced a major lineage turnover although there is evidence for gene flow between cultivated and sympatric wild populations. We show the utility of ancient genomes from desiccated archaeobotanical remains in informing research into the origin, early domestication and subsequent migration of crop species

    A chromosome conformation capture ordered sequence of the barley genome

    Get PDF
    201

    Activation of superior colliculi in humans during visual exploration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visual, oculomotor, and – recently – cognitive functions of the superior colliculi (SC) have been documented in detail in non-human primates in the past. Evidence for corresponding functions of the SC in humans is still rare. We examined activity changes in the human tectum and the lateral geniculate nuclei (LGN) in a visual search task using functional magnetic resonance imaging (fMRI) and anatomically defined regions of interest (ROI). Healthy subjects conducted a free visual search task and two voluntary eye movement tasks with and without irrelevant visual distracters. Blood oxygen level dependent (BOLD) signals in the SC were compared to activity in the inferior colliculi (IC) and LGN.</p> <p>Results</p> <p>Neural activity increased during free exploration only in the SC in comparison to both control tasks. Saccade frequency did not exert a significant effect on BOLD signal changes. No corresponding differences between experimental tasks were found in the IC or the LGN. However, while the IC revealed no signal increase from the baseline, BOLD signal changes at the LGN were consistently positive in all experimental conditions.</p> <p>Conclusion</p> <p>Our data demonstrate the involvement of the SC in a visual search task. In contrast to the results of previous studies, signal changes could not be seen to be driven by either visual stimulation or oculomotor control on their own. Further, we can exclude the influence of any nearby neural structures (e.g. pulvinar, tegmentum) or of typical artefacts at the brainstem on the observed signal changes at the SC. Corresponding to findings in non-human primates, our data support a dependency of SC activity on functions beyond oculomotor control and visual processing.</p
    corecore