4,313 research outputs found

    Hole Spin Mixing in InAs Quantum Dot Molecules

    Get PDF
    Holes confined in single InAs quantum dots have recently emerged as a promising system for the storage or manipulation of quantum information. These holes are often assumed to have only heavy-hole character and further assumed to have no mixing between orthogonal heavy hole spin projections (in the absence of a transverse magnetic field). The same assumption has been applied to InAs quantum dot molecules formed by two stacked InAs quantum dots that are coupled by coherent tunneling of the hole between the two dots. We present experimental evidence of the existence of a hole spin mixing term obtained with magneto-photoluminescence spectroscopy on such InAs quantum dot molecules. We use a Luttinger spinor model to explain the physical origin of this hole spin mixing term: misalignment of the dots along the stacking direction breaks the angular symmetry and allows mixing through the light-hole component of the spinor. We discuss how this novel spin mixing mechanism may offer new spin manipulation opportunities that are unique to holes.Comment: 13 pages, 9 figure

    Studies in the Helminthocladiaceae, III Liagoropsis

    Get PDF
    In the first paper in this series of studies of the Helminthocladiaceae (Dory and Abbott, 1961 ), we have shown that, in two species of Helminthocladia from Hawaii, the female reproductive structures are generally similar to those described by other workers for other species in the genus, and that vegetative structures such as internal cortical rhizoids may be used to distinguish at least the Hawaiian species. In the second paper of this series (Abbott and Dory, 1960) a new genus, Trichogloeopsis, was described as containing three species, one new and two transfers from the genus Liagora. They share a major character in common, that of sterile rhizoidal extensions of the gonimoblast, but again the three species may be distinguished from each other by their vegetative structures

    Photoluminescence Spectroscopy of the Molecular Biexciton in Vertically Stacked Quantum Dot Pairs

    Full text link
    We present photoluminescence studies of the molecular neutral biexciton-exciton spectra of individual vertically stacked InAs/GaAs quantum dot pairs. We tune either the hole or the electron levels of the two dots into tunneling resonances. The spectra are described well within a few-level, few-particle molecular model. Their properties can be modified broadly by an electric field and by structural design, which makes them highly attractive for controlling nonlinear optical properties.Comment: 4 pages, 5 figures, (v2, revision based on reviewers comments, published

    Influence of UV radiation from a massive YSO on the chemistry of its envelope

    Get PDF
    We have studied the influence of far ultraviolet (UV) radiation from a massive young stellar object (YSO) on the chemistry of its own envelope by extending the models of Doty et al. (2002) to include a central source of UV radiation. The models are applied to the massive star-forming region AFGL 2591 for different inner UV field strengths. Depth-dependent abundance profiles for several molecules are presented and discussed. We predict enhanced column densities for more than 30 species, especially radicals and ions. Comparison between observations and models is improved with a moderate UV field incident on the inner envelope, corresponding to an enhancement factor G0~10-100 at 200 AU from the star with an optical depth tau~15-17. Subtle differences are found compared with traditional models of Photon Dominated Regions (PDRs) because of the higher temperatures and higher gas-phase H2O abundance caused by evaporation of ices in the inner region. In particular, the CN/HCN ratio is not a sensitive tracer of the inner UV field, in contrast with the situation for normal PDRs: for low UV fields, the extra CN reacts with H2 in the inner dense and warm region and produces more HCN. It is found that the CH+ abundance is strongly enhanced and grows steadily with increasing UV field. High-J lines of molecules like CN and HCN are most sensitive to the inner dense region where UV radiation plays a role. Thus, even though the total column density affected by UV photons is small, comparison of high-J and low-J lines can selectively trace and distinguish the inner UV field from the outer one. In addition, future Herschel-HIFI observations of hydrides can sensitively probe the inner UV field.Comment: Accepted for publication in A&A. 13 pages, 10 figure

    Electrically tunable g-factors in quantum dot molecular spin states

    Full text link
    We present a magneto-photoluminescence study of individual vertically stacked InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied electric field tunes the relative energies of the two dots, we observe a strong resonant increase or decrease in the g-factors of different spin states that have molecular wavefunctions distributed over both quantum dots. We propose a phenomenological model for the change in g-factor based on resonant changes in the amplitude of the wavefunction in the barrier due to the formation of bonding and antibonding orbitals.Comment: 5 pages, 5 figures, Accepted by Phys. Rev. Lett. New version reflects response to referee comment

    Experiment K-6-03. Gravity and skeletal growth, part 1. Part 2: Morphology and histochemistry of bone cells and vasculature of the tibia; Part 3: Nuclear volume analysis of osteoblast histogenesis in periodontal ligament cells; Part 4: Intervertebral disc swelling pressure associated with microgravity

    Get PDF
    Bone area, bone electrophysiology, bone vascularity, osteoblast morphology, and osteoblast histogenesis were studied in rats associated with Cosmos 1887. The results suggest that the synchronous animals were the only group with a significantly larger bone area than the basal group, that the bone electrical potential was more negative in flight than in the synchronous rats, that the endosteal osteoblasts from flight rats had greater numbers of transitional Golgi vesicles but no difference in the large Golgi saccules or the alkaline phosphatase activity, that the perioteal vasculature in the shaft of flight rats often showed very dense intraluminal deposits with adjacent degenerating osteocytes as well as lipid accumulations within the lumen of the vessels and sometimes degeneration of the vascular wall (this change was not present in the metaphyseal region of flight animals), and that the progenitor cells decreased in flight rats while the preosteoblasts increased compared to controls. Many of the results suggest that the animals were beginning to recover from the effects of spaceflight during the two day interval between landing and euthanasia; flight effects, such as the vascular changes, did not appear to recover

    Water destruction by X-rays in young stellar objects

    Full text link
    We study the H2O chemistry in star-forming environments under the influence of a central X-ray source and a central far ultraviolet (FUV) radiation field. The gas-phase water chemistry is modeled as a function of time, hydrogen density and X-ray flux. To cover a wide range of physical environments, densities between n_H = 10^4-10^9 cm^-3 and temperatures between T = 10-1000 K are studied. Three different regimes are found: For T < 100 K, the water abundance is of order 10^-7-10^-6 and can be somewhat enhanced or reduced due to X-rays, depending on time and density. For 100 K < T < 250 K, H2O is reduced from initial x(H2O) ~ 10^-4 following ice evaporation to x(H2O) ~ 10^-6 for F_X > 10^-3 ergs s-1 cm^-2 (t = 10^4 yrs) and for F_X > 10^-4 ergs s^-1 cm^-2 (t = 10^5 yrs). At higher temperatures (T > 250 K) and hydrogen densities, water can persist with x(H2O) ~ 10^-4 even for high X-ray fluxes. The X-ray and FUV models are applied to envelopes around low-mass Class 0 and I young stellar objects (YSOs). Water is destroyed in both Class 0 and I envelopes on relatively short timescales (t ~ 5000 yrs) for realistic X-ray fluxes, although the effect is less prominent in Class 0 envelopes due to the higher X-ray absorbing densities there. FUV photons from the central source are not effective in destroying water. The average water abundance in Class I sources for L_X > 10^27 ergs s^-1 is predicted to be x(H2O) < 10^-6.Comment: 12 pages, 14 figures, Accepted for publication in A&
    corecore