104 research outputs found
Dynamic recycling of gaseous elemental mercury in the boundary layer of the Antarctic Plateau
International audienceGaseous elemental mercury (Hg0) was investigated in the troposphere and in the interstitial air extracted from the snow at Dome Concordia station (alt. 3320 m) on the Antarctic Plateau during January 2009. Measurements and modeling studies showed evidence of a very dynamic and daily cycling of Hg0 inside the mixing layer with a range of values from 0.2 ng mâ3 up to 2.3 ng mâ3. During low solar irradiation periods, fast Hg0 oxidation processes in a confined layer were suspected. Unexpectedly high Hg0 concentrations for such a remote place were measured under higher solar irradiation due to snow photochemistry. We suggest that a daily cycling of reemission/oxidation occurs during summer within the mixing layer at Dome Concordia. Hg0 concentrations showed a negative correlation with ozone mixing ratios, which contrasts with atmospheric mer- cury depletion events observed during the Arctic spring. Un- like previous Antarctic studies, we think that atmospheric Hg0 removal may not be the result of advection processes. The daily and dramatic Hg0 losses could be a consequence of surface or snow induced oxidation pathways. It remains however unclear whether halogens are involved. The cycling of other oxidants should be investigated together with Hg species in order to clarify the complex reactivity on the Antarctic plateau
Chemical cycling and deposition of atmospheric mercury in Polar Regions: review of recent measurements and comparison with models
Mercury (Hg) is a worldwide contaminant that can cause adverse health effects to wildlife and humans. While atmospheric modeling traces the link from emissions to deposition of Hg onto environmental surfaces, large uncertainties arise from our incomplete understanding of atmospheric processes (oxidation pathways, deposition, and re-emission). Atmospheric Hg reactivity is exacerbated in high latitudes and there is still much to be learned from polar regions in terms of atmospheric processes. This paper provides a synthesis of the atmospheric Hg monitoring data available in recent years (2011â2015) in the Arctic and in Antarctica along with a comparison of these observations with numerical simulations using four cutting-edge global models. The cycle of atmospheric Hg in the Arctic and in Antarctica presents both similarities and differences. Coastal sites in the two regions are both influenced by springtime atmospheric Hg depletion events and by summertime snowpack re-emission and oceanic evasion of Hg. The cycle of atmospheric Hg differs between the two regions primarily because of their different geography. While Arctic sites are significantly influenced by northern hemispheric Hg emissions especially in winter, coastal Antarctic sites are significantly influenced by the reactivity observed on the East Antarctic ice sheet due to katabatic winds. Based on the comparison of multi-model simulations with observations, this paper discusses whether the processes that affect atmospheric Hg seasonality and interannual variability are appropriately represented in the models and identifies research gaps in our understanding of the atmospheric Hg cycling in high latitudes
Mercury in the snow and firn at Summit Station, Central Greenland, and implications for the study of past atmospheric mercury levels
Gaseous Elemental Mercury (Hg° or GEM) was investigated at Summit Station, Greenland, in the interstitial air extracted from the perennial snowpack (firn) at depths ranging from the surface to 30 m, during summer 2005 and spring 2006. Photolytic production and destruction of Hg° were observed close to the snow surface during summer 2005 and spring 2006, and we observed dark oxidation of GEM up to 270 cm depth in June 2006. Photochemical transformation of gaseous elemental mercury resulted in diel variations in the concentrations of this gas in the near-surface interstitial air, but destruction of Hg° was predominant in June, and production was the main process in July. This seasonal evolution of the chemical mechanisms involving gaseous elemental mercury produces a signal that propagates downward through the firn air, but is unobservably small below 15 m in depth. As a consequence, multi-annual averaged records of GEM concentration should be well preserved in deep firn air at depths below 15 m, and available for the reconstruction of the past atmospheric history of GEM over the last decades
A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow
It was discovered in 1995 that, during the spring time, unexpectedly low concentrations of gaseous elemental mercury (GEM) occurred in the Arctic air. This was surprising for a pollutant known to have a long residence time in the atmosphere; however conditions appeared to exist in the Arctic that promoted this depletion of mercury (Hg). This phenomenon is termed atmospheric mercury depletion events (AMDEs) and its discovery has revolutionized our understanding of the cycling of Hg in Polar Regions while stimulating a significant amount of research to understand its impact to this fragile ecosystem. Shortly after the discovery was made in Canada, AMDEs were confirmed to occur throughout the Arctic, sub-Artic and Antarctic coasts. It is now known that, through a series of photochemically initiated reactions involving halogens, GEM is converted to a more reactive species and is subsequently associated to particles in the air and/or deposited to the polar environment. AMDEs are a means by which Hg is transferred from the atmosphere to the environment that was previously unknown. In this article we review Hg research taken place in Polar Regions pertaining to AMDEs, the methods used to collect Hg in different environmental media, research results of the current understanding of AMDEs from field, laboratory and modeling work, how Hg cycles around the environment after AMDEs, gaps in our current knowledge and the future impacts that AMDEs may have on polar environments. The research presented has shown that while considerable improvements in methodology to measure Hg have been made but the main limitation remains knowing the speciation of Hg in the various media. The processes that drive AMDEs and how they occur are discussed. As well, the role that the snow pack and the sea ice play in the cycling of Hg is presented. It has been found that deposition of Hg from AMDEs occurs at marine coasts and not far inland and that a fraction of the deposited Hg does not remain in the same form in the snow. Kinetic studies undertaken have demonstrated that bromine is the major oxidant depleting Hg in the atmosphere. Modeling results demonstrate that there is a significant deposition of Hg to Polar Regions as a result of AMDEs. Models have also shown that Hg is readily transported to the Arctic from source regions, at times during springtime when this environment is actively transforming Hg from the atmosphere to the snow and ice surfaces. The presence of significant amounts of methyl Hg in snow in the Arctic surrounding AMDEs is important because this species is the link between the environment and impacts to wildlife and humans. Further, much work on methylation and demethylation processes has occurred but these processes are not yet fully understood. Recent changes in the climate and sea ice cover in Polar Regions are likely to have strong effects on the cycling of Hg in this environment; however more research is needed to understand Hg processes in order to formulate meaningful predictions of these changes
Observed in-plume gaseous elemental mercury depletion suggests significant mercury scavenging by volcanic aerosols
Terrestrial volcanism is known to emit mercury (Hg) into the atmosphere. However, despite many years of investigation, its net impact on the atmospheric Hg budget remains insufficiently constrained, in part because the transformations of Hg in volcanic plumes as they age and mix with background air are poorly understood. Here we report the observation of complete gaseous elemental mercury (GEM) depletion events in dilute and moderately aged (& SIM;3-7 hours) volcanic plumes from Piton de la Fournaise on Reunion Island. While it has been suggested that co-emitted bromine could, once photochemically activated, deplete GEM in a volcanic plume, we measured low bromine concentrations in both the gas- and particle-phase and observed complete GEM depletion even before sunrise, ruling out a leading role of bromine chemistry here. Instead, we hypothesize that the GEM depletions were mainly caused by gas-particle interactions with sulfate-rich volcanic particles (mostly of submicron size), abundantly present in the dilute plume. We consider heterogeneous GEM oxidation and GEM uptake by particles as plausible manifestations of such a process and derive empirical rate constants. By extrapolation, we estimate that volcanic aerosols may scavenge 210 Mg y(-1) (67-480 Mg y(-1)) of Hg from the atmosphere globally, acting effectively as atmospheric mercury sink. While this estimate is subject to large uncertainties, it highlights that Hg transformations in aging volcanic plumes must be better understood to determine the net impact of volcanism on the atmospheric Hg budget and Hg deposition pathways
Investigation of the deposition and emission of mercury in arctic snow during an atmospheric mercury depletion event
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94701/1/jgrd14741.pd
Understanding mercury oxidation and airâsnow exchange on the East Antarctic Plateau: a modeling study
Distinct diurnal and seasonal variations of mercury (Hg) have been observed
in near-surface air at Concordia Station on the East Antarctic Plateau, but
the processes controlling these characteristics are not well understood.
Here, we use a box model to interpret the Hg0 (gaseous elemental
mercury) measurements in thes year 2013. The model includes atmospheric Hg0
oxidation (by OH, O3, or bromine), surface snow HgII (oxidized
mercury) reduction, and airâsnow exchange, and is driven by meteorological
fields from a regional climate model. The simulations suggest that a
photochemically driven mercury diurnal cycle occurs at the airâsnow interface
in austral summer. The fast oxidation of Hg0 in summer may be provided
by a two-step bromine-initiated scheme, which is favored by low temperature
and high nitrogen oxides at Concordia. The summertime diurnal variations of
Hg0 (peaking during daytime) may be confined within several tens of
meters above the snow surface and affected by changing mixed layer depths.
Snow re-emission of Hg0 is mainly driven by photoreduction of snow
HgII in summer. Intermittent warming events and a hypothesized reduction
of HgII occurring in snow in the dark may be important processes
controlling the mercury variations in the non-summer period, although their
relative importance is uncertain. The Br-initiated oxidation of Hg0 is
expected to be slower at Summit Station in Greenland than at Concordia (due to their
difference in temperature and levels of nitrogen oxides and ozone), which may
contribute to the observed differences in the summertime diurnal variations
of Hg0 between these two polar inland stations.</p
Frost flowers growing in the Arctic oceanâatmosphereâsea iceâsnow interface: 2. Mercury exchange between the atmosphere, snow, and frost flowers
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95146/1/jgrd17360.pd
Fostering multidisciplinary research on interactions between chemistry, biology, and physics within the coupled cryosphere-atmosphere system
The cryosphere, which comprises a large portion of Earthâs surface, is rapidly changing as a consequence of global climate change. Ice, snow, and frozen ground in the polar and alpine regions of the planet are known to directly impact atmospheric composition, which for example is observed in the large influence of ice and snow on polar boundary layer chemistry. Atmospheric inputs to the cryosphere, including aerosols, nutrients, and contaminants, are also changing in the anthropocene thus driving cryosphere-atmosphere feedbacks whose understanding is crucial for understanding future climate. Here, we present the Cryosphere and ATmospheric Chemistry initiative (CATCH) which is focused on developing new multidisciplinary research approaches studying interactions of chemistry, biology, and physics within the coupled cryosphere â atmosphere system and their sensitivity to environmental change. We identify four key science areas: (1) micro-scale processes in snow and ice, (2) the coupled cryosphere-atmosphere system, (3) cryospheric change and feedbacks, and (4) improved decisions and stakeholder engagement. To pursue these goals CATCH will foster an international, multidisciplinary research community, shed light on new research needs, support the acquisition of new knowledge, train the next generation of leading scientists, and establish interactions between the science community and society
- âŠ