86 research outputs found

    The Hyperspherical Harmonics Method: A Tool for Testing and Improving Nuclear Interaction Models

    Get PDF
    none6siThe Hyperspherical Harmonics (HH) method is one of the most accurate techniques to solve the quantum mechanical problem for nuclear systems with a number of nucleons A ≤ 4. In particular, by applying the Rayleigh-Ritz or Kohn variational principle, both bound and scattering states can be addressed, using either local or non-local interactions. Thanks to this versatility, the method can be used to test the two- and three-nucleon components of the nuclear interaction. In the present review we introduce the formalism of the HH method, both for bound and scattering states. In particular, we describe the implementation of the method to study the A = 3 and 4 scattering problems. Second, we present a selected choice of results of the last decade, most representative of the latest achievements. Finally, we conclude with a discussion of what we believe will be the most significant developments within the HH method for the next 5–10 years.openMarcucci L.E.; Dohet-Eraly J.; Girlanda L.; Gnech A.; Kievsky A.; Viviani M.Marcucci, L. E.; Dohet-Eraly, J.; Girlanda, L.; Gnech, A.; Kievsky, A.; Viviani, M

    The cardiac troponin C mutation Leu29Gln found in a patient with hypertrophic cardiomyopathy does not alter contractile parameters in skinned murine myocardium

    Get PDF
    The present study investigates the effects of the first mutation of troponin C (hcTnCL29Q) found in a patient with hypertrophic cardiomyopathy (HCM) on force–pCa relations and the interplay with phosphorylation of sarcomeric PKA substrates. In triton-skinned murine cardiac fibers, the endogenous mcTnC was extracted and the fibers were subsequently reconstituted with recombinant wild-type and mutant hcTnC. Force–pCa relations of preparations containing hcTnCL29Q or hcTnCWT were similar. Incubation of fibers reconstituted with the recombinant proteins with phosphatase to dephosphorylate sarcomeric PKA substrates induced an increase in Ca2+ sensitivity, slightly more pronounced (0.04 pCa units) in hcTnCL29Q-containing fibers. Incubation of the dephosphorylated fibers with PKA induced significant rightward shifts of force–pCa relations of similar magnitude with both, hcTnCL29Q and hcTnCWT. No significant effects of hcTnCL29Q on the velocity of unloaded shortening were observed. In conclusion, no major differences in contractile parameters of preparations containing hcTnCL29Q compared to hcTnCWT were observed. Therefore, it appears unlikely that hcTnCL29Q induces the development of HCM by affecting the regulation of Ca2+-activated force and interference with PKA-mediated modulation of the Ca2+ sensitivity of contraction

    Energetic signatures of single base bulges: thermodynamic consequences and biological implications

    Get PDF
    DNA bulges are biologically consequential defects that can arise from template-primer misalignments during replication and pose challenges to the cellular DNA repair machinery. Calorimetric and spectroscopic characterizations of defect-containing duplexes reveal systematic patterns of sequence-context dependent bulge-induced destabilizations. These distinguishing energetic signatures are manifest in three coupled characteristics, namely: the magnitude of the bulge-induced duplex destabilization (ΔΔGBulge); the thermodynamic origins of ΔΔGBulge (i.e. enthalpic versus entropic); and, the cooperativity of the duplex melting transition (i.e. two-state versus non-two state). We find moderately destabilized duplexes undergo two-state dissociation and exhibit ΔΔGBulge values consistent with localized, nearest neighbor perturbations arising from unfavorable entropic contributions. Conversely, strongly destabilized duplexes melt in a non-two-state manner and exhibit ΔΔGBulge values consistent with perturbations exceeding nearest-neighbor expectations that are enthalpic in origin. Significantly, our data reveal an intriguing correlation in which the energetic impact of a single bulge base centered in one strand portends the impact of the corresponding complementary bulge base embedded in the opposite strand. We discuss potential correlations between these bulge-specific differential energetic profiles and their overall biological implications in terms of DNA recognition, repair and replication

    The recovery of European freshwater biodiversity has come to a halt

    Get PDF
    Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.publishedVersio

    The recovery of European freshwater biodiversity has come to a halt

    Get PDF
    Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.N. Kaffenberger helped with initial data compilation. Funding for authors and data collection and processing was provided by the EU Horizon 2020 project eLTER PLUS (grant agreement no. 871128); the German Federal Ministry of Education and Research (BMBF; 033W034A); the German Research Foundation (DFG FZT 118, 202548816); Czech Republic project no. P505-20-17305S; the Leibniz Competition (J45/2018, P74/2018); the Spanish Ministerio de Economía, Industria y Competitividad—Agencia Estatal de Investigación and the European Regional Development Fund (MECODISPER project CTM 2017-89295-P); Ramón y Cajal contracts and the project funded by the Spanish Ministry of Science and Innovation (RYC2019-027446-I, RYC2020-029829-I, PID2020-115830GB-100); the Danish Environment Agency; the Norwegian Environment Agency; SOMINCOR—Lundin mining & FCT—Fundação para a Ciência e Tecnologia, Portugal; the Swedish University of Agricultural Sciences; the Swiss National Science Foundation (grant PP00P3_179089); the EU LIFE programme (DIVAQUA project, LIFE18 NAT/ES/000121); the UK Natural Environment Research Council (GLiTRS project NE/V006886/1 and NE/R016429/1 as part of the UK-SCAPE programme); the Autonomous Province of Bolzano (Italy); and the Estonian Research Council (grant no. PRG1266), Estonian National Program ‘Humanitarian and natural science collections’. The Environment Agency of England, the Scottish Environmental Protection Agency and Natural Resources Wales provided publicly available data. We acknowledge the members of the Flanders Environment Agency for providing data. This article is a contribution of the Alliance for Freshwater Life (www.allianceforfreshwaterlife.org).Peer reviewe

    La radiestesia ante la ciencia : revelaciones sobre la radiestesia

    No full text
    Data do prólogo, 194
    corecore