674 research outputs found

    Interaction of hemoglobin Grey Lynn (Vientiane) with a non-deletional α+-thalassemia in an adult Thai proband

    Get PDF
    Hemoglobin (Hb) Grey Lynn is a Hb variant caused by a substitution of Phe for Leu at position 91 of α1-globin chain, originally described in individual of unknown ethnic background. This article addresses the interaction of Hb Grey Lynn with a non-deletional α+-thalassemia found in Thailand, a hitherto un-described condition. The proband was adult Thai woman referred for investigation of mild anemia with Hb 90 g/L. Hb analyses using low pressure liquid chromatography raised a suspicion of abnormal Hb presence, which was failed to demonstrate by cellulose acetate electrophoresis and capillary electrophoresis. DNA sequencing identified a CTT (Leu) to TTT (Phe) mutation at codon 91 corresponding to the Hb Grey Lynn (Vientiane) [α91(FG3)Leu>Phe (α1) on α1-globin gene and a C deletion between codons 36 and 37 on α2-globin gene causing α+-thalassemia. As compared to those observed in a compound heterozygote for Hb Grey Lynn / α0-thalassemia reported previously, higher MCV (81.7 fL) and MCH (26.3 pg) values with a lower level of Hb Grey Lynn (19.7%) were observed in the proband. The normochromic normocytic anemia observed could be due to the interaction of Hb Grey Lynn with α+-thalassemia. The two mutations could be identified using PCR-RFLP and allele-specific PCR assays developed

    Evaluation of staff performance and interpretation of the screening program for prevention of thalassemia

    Get PDF
    IntroductionThalassemia screening program has been implemented for years in Southeast Asia, but no external quality assessment program has been established. We have developed and initiated the proficiency testing (PT) program for the first time in Thailand with the aim to assess the screening performance of laboratory staff and their competency in interpretation of the screening results. Materials and methodsThree PT cycles per year were organized. From the first to the third cycle of the PT scheme, a total number of participant laboratories increased from 59 to 67. In each cycle, 2 PT items (assigned as blood samples of the couple) were provided. Performance evaluation was based on the accuracy of screening results, i.e. mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and the dichlorophenolindophenol (DCIP) test for haemoglobin E, including the competency in interpretation of screening results and assessment of foetal risk. Performance was assessed by comparing the participants’ result against the assigned value. ResultsOf all 3 cycles, most laboratories reported acceptable MCV and MCH values. From the first to the third cycle, incorrect DCIP test and misinterpretation rates were decreased while incorrect risk assessment varied by cycle to cycle. Combining the accuracy of thalassemia screening and the competency in interpretation and risk assessment, approximately half of participants showed excellent performance. ConclusionImproved performance observed in many laboratories reflects the achievement and benefit of the PT program which should be regularly provided

    Chapter Green Tea: Just a Drink or Nutraceutical

    Get PDF
    Electrical engineerin

    Green Tea: Just a Drink or Nutraceutical

    Get PDF
    Electrical engineerin

    PREVALENCE OF THALASSEMIA AMONG NEWBORNS: A RE-VISITED AFTER 20 YEARS OF A PREVENTION AND CONTROL PROGRAM IN NORTHEAST THAILAND.

    Get PDF
    Background: To provide accurate prevalence information of thalassemia in northeast Thailand after 20 years implementation of a prevention and control program, thalassemia screening was carried out in newborns.   Methods: Study was done on 350 cord blood specimens collected consecutively at Maternal and Child Hospital, Regional Health Promotion Center 7, Khon Kaen, Thailand. All kinds of a- and β-thalassemias were identified using combined hemoglobin (Hb) and DNA analyses.  Results: Among 350 newborns examined, subjects with thalassemia genes were identified in 184 (52.6%) cases with as many as 22 different genotypes. The most prevalent one was Hb E (39.1%). The incidence of 3.1% a0-thalassemia, 25.9% a+-thalassemia, 5.4% Hb Constant Spring and 1.4% of Hb Paksé were encountered. Heterozygous β-thalassemia was found in 2 cases (0.6%). Hb capillary electrophoresis could demonstrate Hb E in all cases with Hb E and detected different levels of Hb Bart’s for different a-thalassemia genotypes but not in all cases with a-thalassemia. No newborn with severe thalassemia diseases was encountered. Conclusion: This study reveals that a-thalassemia, β-thalassemia and Hb E carriers as well as complex thalassemia syndromes are still prevalence and indicates a need for continuing a prevention and control program in the region

    Anti-Platelet Aggregation and Anti-Cyclooxygenase Activities for a Range of Coffee Extracts (Coffea arabica)

    Get PDF
    Coffee is rich in caffeine (CF), chlorogenic acid (CGA) and phenolics. Differing types of coffee beverages and brewing procedures may result in differences in total phenolic contents (TPC) and biological activities. Inflammation and increases of platelet activation and aggregation can lead to thrombosis. We focused on determining the chemical composition, antioxidant activity and inhibitory effects on agonist-induced platelet aggregation and cyclooxygenase (COX) of coffee beverages in relation to their preparation method. We prepared instant coffee and brewed coffee beverages using drip, espresso, and boiling techniques. Coffee extracts were assayed for their CF and CGA contents using HPLC, TPC using colorimetry, platelet aggregation with an aggregometer, and COX activity using ELISA. The findings have shown all coffee extracts, except the decaffeinated types, contained nearly equal amounts of CF, CGA, and TPC. Inhibitory effects of coffee extracts on platelet aggregation differed depending on the activation pathways induced by different agonists. All espresso, drip and boiled coffee extracts caused dose dependent inhibition of platelet aggregation induced by ADP, collagen, epinephrine, and arachidonic acid (ARA). The most marked inhibition was seen at low doses of collagen or ARA. Espresso and drip extracts inhibited collagen-induced platelet aggregation more than purified caffeine or CGA. Espresso, boiled and drip coffee extracts were also a more potent inhibitors of COX-1 and COX-2 than purified caffeine or CGA. We conclude that inhibition of platelet aggregation and COX-1 and COX-2 may contribute to anti-platelet and anti-inflammatory effects of espresso and drip coffee extracts

    Nutraceutical Benefits of Green Tea in Beta-Thalassemia with Iron Overload

    Get PDF
    Secondary iron overload in patients with β-thalassemia is caused by multiple blood transfusions and increased iron absorption. Most of them die from cardiac arrest and infections while others from oxidative tissue damage and organ dysfunction. Under high saturation of transferrin with iron, redox-active iron such as non-transferrin-bound iron, labile plasma iron, and cellular labile iron pool is prone to the production of reactive oxygen species, oxidized biomolecules, oxidative tissue damages, and complications. Iron chelation therapy and antioxidant supplementation are a supportive treatment for patients’ better quality of life and life expectancy. Green tea (Camellia sinensis) extract (GTE) is abundant with polyphenols, mainly epigallocatechin-3-gallate and nutraceuticals, which are beneficial for cell functions and health. Importantly, GTE possesses antioxidant, free radical scavenging, metal-chelating, anti-hemolysis properties in cell cultures, animals, and humans. This article has reported modes of actions and challenged such wonderful properties of green tea used to remove excessive iron, scavenge harmful radicals, restore malfunctions of vital organs, and treat patients with β-thalassemia with iron overload. Infeasibility and sustainability, the benefits of green tea can be applied for use in other diseases with iron toxicity and oxidative stress

    Diet-Related Thalassemia Associated with Iron Overload

    Get PDF
    Thalassemia is an inherited disease caused by the genetic disorder of α- and β-globin genes, resulting in ineffective erythropoiesis and chronic anemia. Transfusion-dependent β-thalassemia patients require red cell transfusion to maintain their blood hemoglobin level in the normal range, whereas non-transfusion-dependent thalassemia patients increase duodenal absorption of dietary iron in an attempt to accelerate erythropoiesis. These changes give rise to iron overload, oxidative stress, organ dysfunction, and other complications. Effective iron chelators are necessary to achieve negative iron balance and to relieve such complications associated with iron overload. Some pharmaceuticals such as hydroxyurea, N-acetylcysteine, ascorbic acid, vitamin E, and glutathione are also given to thalassemia patients in order to overcome oxidative cell and tissue damage and to generate a better quality of life. Interestingly, functional natural products (such as mango, tea, caffeine, and curcumin), vegetables, and cereal (e.g., rice) are helpful for their health-providing properties by supplementing the endogenous antioxidant defensive power in the body. Natural products exhibit many pharmacological activities, but they are safer if used in the traditional manner
    corecore