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The Hyperspherical Harmonics (HH) method is one of the most accurate techniques

to solve the quantum mechanical problem for nuclear systems with a number of

nucleons A ≤ 4. In particular, by applying the Rayleigh-Ritz or Kohn variational principle,

both bound and scattering states can be addressed, using either local or non-local

interactions. Thanks to this versatility, the method can be used to test the two- and

three-nucleon components of the nuclear interaction. In the present review we introduce

the formalism of the HH method, both for bound and scattering states. In particular, we

describe the implementation of themethod to study the A = 3 and 4 scattering problems.

Second, we present a selected choice of results of the last decade, most representative

of the latest achievements. Finally, we conclude with a discussion of what we believe will

be the most significant developments within the HH method for the next 5–10 years.

Keywords: hyperspherical harmonics method, ab initio methods, nuclear interactions, few-nucleon systems, light

nuclei, A = 3, 4 scattering

1. INTRODUCTION

The “standard” picture of a nucleus sees it as a system of A nucleons, protons or neutrons,
interacting among themselves and eventually with external electroweak probes. The interaction
between nucleons, i.e., the nuclear interaction, is the subject of the Research Topic of which this
contribution is part. Using the nucleon as the relevant degree of freedom, the system is described
by the nuclear Hamiltonian, written as

H =

A
∑

i=1

p2i
2mi

+

A
∑

j>i=1

Vij +

A
∑

k>j>i=1

Vijk + · · · , (1)

where the first term is the (non-relativistic) kinetic energy (in the center-of-mass reference
frame), mi being the ith nucleon mass, Vij and Vijk are, respectively, the two- and three-nucleon
interactions, i.e., the interaction between each ij pair or ijk triple. It has been shown in several
studies (for recent ones see references [1, 2]) that even the nuclear systems with medium-large
values of A can be at least qualitatively described including Vij and Vijk only: essentially, it seems
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to be little room [3] for four- or more-nucleon interactions [the
dots of Equation (1)]. Therefore, we will neglect from now on the
contributions beyond three-nucleon interaction.

There exists a large variety of realistic models for Vij and Vijk.
The most important ones are presented in this Research Topic.
These models are very different among themselves, as they can
be local, or minimally non-local and expressed in coordinate
space, or non-local and expressed in momentum space. Some
older models were derived phenomenologically or in a meson-
theoretical approach, as the Argonne v18 [4] or the CDBonn [5]
potentials, but, since the seminal work of Weinberg [6], the
preferred framework to derive the nuclear interaction is chiral
effective field theory. Since the presentation of the different
models is assigned to this Research Topic, here we only mention
that all the models have a common characteristic: the Vij

and Vijk interactions have an intricate operatorial structure. As
a consequence, the solution of the Schrödinger equation for
A > 2 becomes a challenging problem. The methods which
are able to solve the A-body quantum mechanical problem
without approximations, or with approximations which can be
maintained under control, are the so-called ab initio methods1.
They are clearly essential in order to test a given model for
the nuclear interaction against experiment. It is fundamental for
these methods to be sufficiently accurate to capture the small
details introduced by the complexity of the interaction. As an
example, we can quote the case of the triton binding energy. It is
nowadays well-known that the triton binding energy calculated
just retaining Vij in Equation (1) is underestimated by 0.5 − 1
MeV, depending of the considered model. It is straightforward
that the required accuracy of the ab initio method to catch
this disagreement must be better that 500 keV. Nowadays, the
methods for the A = 3 bound systems have reached a much
higher accuracy, of the order of 1 keV, or even better. And
therefore, the presence of Vijk is not anymore under discussion.
To be noted that (i) all models for the two-nucleon interaction
are phase-equivalent, and (ii) each model for Vijk is built in
conjunction with a given model for Vij, and therefore two- and
three-nucleon interactions are linked to each other and cannot
be uniquely defined.

There are several ab initio methods which can solve the A-
body quantum mechanical problem in different regions of the
nuclear chart. A recent review is given in reference [7]. Here we
limit ourselves to mention the methods based on Monte Carlo
techniques, as the variational Monte Carlo (VMC) or the Green’s
function Monte Carlo (GFMC) methods (see reference [8], and
references therein). There are then the methods linked to the
shell model, as the no-core shell model (NCSM) or the realistic
shell model (RSM) (see references [9–11]), respectively. All these
methods are quite powerful to study medium-mass nuclear
bound states, but less accurate, apart from the GFMC andNCSM,
for very light nuclei, as those with A = 3, 4. Furthermore, their
extension to the scattering systems is not so trivial, and, in some
cases, still not at reach.

1The expression “ab initio method” has been quite widely used in the literature,

with a somewhat less strict definition, than the one used here. Here we follow the

definition of reference [7].

Restricting ourselves to the A = 3, 4 nuclear systems, both
bound and scattering states, we have at hand very few accurate
ab initio methods, i.e., the Faddeev (Faddeev-Yakubovsky for
A = 4) equations (FE) technique, solved in coordinate- or in
momentum-space, the method based on the Alt-Grassberger-
Sandhas (AGS) equations solved in momentum space, and the
Hyperspherical Harmonics (HH) method presented here. We
refer the reader to references [12, 13] for the FE method in
coordinate space, to references [14, 15] for the FE method in
momentum space, to references [16, 17] for recent reviews on
the AGS method. Clearly, each method has advantages and
drawbacks. For instance, the FE method in momentum space can
be applied to A = 3, 4 bound and scattering states in a wide
energy range. However, the inclusion of the Coulomb interaction
for charged particle scattering states is quite problematic. The FE
method in coordinate space can handle the Coulomb interaction,
but it has not yet been applied to scattering problems at very
low-energy, and it has been applied only recently to study
systems with larger A values [18]. It is though a method with in
principle great possibilities of extension [13]. The AGS method,
although working in momentum space, can handle the Coulomb
interaction and can be applied to a large variety of A = 3, 4
scattering states, in a wide energy range. However, the very low
energy range, that of interest to nuclear astrophysics, i.e., below
about 100 keV, is still not accessible with the AGS method. The
method has also not been applied for A > 4 yet.

The HH method has a long history, summarized in the
introduction of reference [19]. We will concentrate here on the
latest developments, essentially those obtained since 2008, year
of publication of reference [19]. However, to fully appreciate
the major developments of this last decade, it is necessary to
briefly outline the state-of-the-art of the HHmethod at that time.
The HH method in 2008 was extensively used by two groups,
one formed by some of the present authors, and referred to
as the Pisa group, and the other one including, among others,
N. Barnea, W. Leidemann, and G. Orlandini. The latter has
developed over the years the so-called effective interaction HH
method (EIHH), which uses the Suzuki-Lee approach [20–22]
to significantly reduce the number of the basis functions needed
in the expansion. The method has been applied to study the
A ≤ 4 nuclear bound systems in references [23, 24] using
local realistic interactions, and had been pushed to work up to
A = 6 with central potential models [23]. In the last decade, the
EIHH method has been updated in order to work also with the
most recent non-local potential models [25]. Furthermore, the
EIHH method has been extensively used in testing the nuclear
interaction models, using reactions between light nuclei and
electromagnetic probes. For example, a test of the interaction
models has been performed studying the 0+ resonance of 4He
in 4He(e, e′), where a large potential model dependence has been
found [26, 27]. In this review, however, we have decided to leave
out the large body of results for the electromagnetic reactions
on light nuclei, which would deserve a review all by itself (see
reference [28]).

The HH method as developed by the Pisa group existed in
2008 in two flavors: the correlated HH method, including a
pair-correlation function (pair-correlated HH method—PHH)
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or with a Jastrow type factor (correlated HH method—
CHH), and the “pure” HH method. The correlation factor
was introduced to describe correlations induced by the strong
repulsion of the interaction at short range. The correlation factor
describes the particular configuration in which two particles
are close to each other and goes to unity for large pair
relative distances. Therefore the HH expansion has to take
care of reconstructing the wave function outside this range,
making the convergence of the expansion much faster. The
drawbacks of the PHH and CHH methods are (i) the necessity
of performing numerical integrations, which would be instead
analytical without correlation factors, reducing the accuracy of
the method in the A = 4 case; (ii) the not simple extension of
the PHH method to work in momentum space. Therefore, it is
difficult to apply the PHH method with the non-local potentials
mentioned above. This has motivated our group, together with
the continuous increasing of computing power, to return to the
“pure” HHmethod. Up to the year 2008, this had been developed
and applied to study with great accuracy the A = 3, 4 bound
states, with both local potentials, expressed in coordinate space,
or non-local ones, given in momentum-space. In fact, while
the local interactions had been at reach for the HH method
from the very beginning [29], the non-local ones were a recent
achievement at that time [30]. In 2008, the zero-energy A =
3, 4 scattering states were also calculated with both local and
non-local interactions [19]. The higher energy scattering states,
still below the breakup threshold of the target nucleus, had
been studied for both A = 3 and 4 systems only with local
interactions, in a variety of contributions extensively mentioned
in reference [19]. What was still missing in 2008 was the study
of the A = 3, 4 scattering states, still below the target breakup
threshold, with non-local potentials. This has been obtained in
references [31–35] for both A = 3 and 4, and it is in fact
one of the main achievements of the HH method in the last
decade. The HH method, in its PHH version, has been applied,
including the full electromagnetic interaction, to describe elastic
scattering observables in A = 3 above the deuteron breakup
threshold [36] and in wide energy region [37]. Preliminary
studies of the method to treat the breakup channels, as for
instance to the process n + d → n + n + p, can be found
in references [38–40]. The application of the method using the
Hamiltonian defined in Equation (1) is in progress. In progress is
also the further development of the method toward A > 4. This
has been performed within the so-called non-symmetrized HH
method [41] with central potentials, or, as mentioned above, by
the EIHH method. The first steps to use the HH method without
the Suzuki-Lee procedure have been shown in references [42,
43], and intense research activity is currently underway. The
formalism which is presented here is in fact quite general, and
can be applied also to the A = 5, 6 nuclear systems.

Before concluding this section with the outline of this
contribution, we would like to make few remarks: (i) the HH
method is extremely powerful, and its application to systems
up to A ∼ 7, 8 is limited essentially by computing power. (ii)
The accuracy of the HH method has been tested in a number of
benchmark calculations. In particular we quote the benchmark
on the A = 3 [44] and A = 4 [45] bound states, on the nd

and pd scattering phase shifts [46, 47], and, in the last decade,
on the A = 4 scattering states [34, 48]. (iii) Compared with the
other ab initio methods, the HH technique seems to be one of
the best choices to study low-energy scattering states, in order to
obtain accurate predictions for nuclear reactions of astrophysical
interest [49, 50].

The present review is organized as follows: in section 2 we
discuss the HH formalism, both for bound and scattering states.
We will try to keep a somewhat “pedagogical” level, in order
to allow the interested reader to perform his/her own algebraic
steps and eventually reproduce the already existing results. In
section 3 we discuss the most important results obtained within
the HH method since the year 2008. In particular, we will show
that the HH method has reached such a degree of accuracy for
both bound and scattering states, that it has been used in order
to construct an accurate model for the three-nucleon interaction,
with a procedure similar, in principle, to the one used to derive
the nowadays very accurate two-nucleon interaction models.
Finally, in section 4 we will give some concluding remarks and
an outlook.

2. THE HH FORMALISM

We review in this section the HH formalism, focusing in
particular on the three- and four-body systems, both bound
and scattering states. The approach described below can be
used in conjunction with both local and non-local two-nucleon
interactions. At present, the method works with only local three-
nucleon interactions, but its extension to the non-local case
presents no conceptual difficulties.

2.1. Hyperspherical Harmonic Functions
Let us consider a system of A particles with masses m1, . . . , mA

and spatial coordinates r1, . . . , rA, respectively. For separating
the internal and center-of-mass (c.m.) motion, it is convenient
to introduce another set of coordinates made of N = A − 1
internal Jacobi coordinates x1, . . . , xN and the c.m. coordinate X
defined by

X =
1

M

A
∑

i=1

miri (2)

where M =
∑A

i=1mi is the total mass of the system. There are
several definitions of the Jacobi coordinates, but a convenient one
which will be used through this work is the following

xN−j+1 =

√

2mj+1Mj

Mj+1m



rj+1 −
1

Mj

j
∑

i=1

miri



 , (3)

wherem is a reference mass,Mj =
∑j

i=1mi, and j = 1, . . . ,N. In
the case where all the particles have the same mass m, Equation
(3) reduces to

xN−j+1 =

√

2j

j+ 1



rj+1 −
1

j

j
∑

i=1

ri



 . (4)
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From a given choice of the Jacobi vectors, the hyperspherical
coordinates (ρ,�N) can be introduced. The hyperradius ρ is
defined by

ρ =

√

√

√

√

N
∑

i=1

x2i =

√

√

√

√

2

A

A
∑

j>i=1

(ri − rj)2 =

√

√

√

√2

A
∑

i=1

(ri − X)2, (5)

where xi is the modulus of the Jacobi vector xi. The hyperradius
ρ is symmetric with respect to particle exchanges and does not
depend on the particular choice of Jacobi coordinates. The set�N

of hyperangular coordinates,

�N = {x̂1, . . . , x̂N ,ϕ2, . . . ,ϕN}, (6)

is made of the angular parts x̂i = (θi,φi) of the spherical
components of the Jacobi vectors xi, with i = 1, . . .N, and of
the hyperangles ϕj, defined by

cosϕj =
xj

√

x21 + . . .+ x2j

, (7)

where 0 ≤ ϕj ≤ π/2 and j = 2, . . . ,N.
The advantage of using the hyperspherical coordinates can be

appreciated noting that the internal kinetic energy operator of the
A-body system can be decomposed as

T = −
h̄2

m

N
∑

i=1

1xi =−
h̄2

m

(

∂2

∂ρ2
+

3N − 1

ρ

∂

∂ρ
−
32

N(�N)

ρ2

)

, (8)

where the operator 32
N(�N) is the so-called grand-angular

momentum operator. Its explicit expression can be found, for
instance, in references [19, 51], but it is not essential for
our purposes. More important are the eigenfunctions of the
grand-angularmomentum32

N(�N), the so-called hyperspherical
harmonics (HH). They can be defined as

Y
KLML
[K] (�N) = [[. . . [Yl1 (x̂1)Yl2 (x̂2)]L2 . . .YlN−1

(x̂N−1)]LN−1

YlN (x̂N)]LML

N
∏

j=2

(j)P
Kj−1 ,lj
nj

(ϕj). (9)

Here Yli (x̂i) is a spherical harmonic function for i = 1, . . . ,N, L
is the total orbital angular momentum,ML its projection on the z
axis, and

Kj =

j
∑

i=1

(li + 2ni) (10)

with n1 = 0, j = 1, . . . ,N, and KN ≡ K is the so-called grand-
angular momentum. The notation [K] stands for the collection
of all the quantumnumbers [l1, . . . , lN , L2, . . . , LN−1, n2, . . . , nN].

The functions (j)P
Kj−1 ,lj
nj

(ϕj) in Equation (9) are defined by

(j)P
Kj−1 ,lj
nj

= N
lj ,νj
nj (cosϕj)

lj (sinϕj)
Kj−1P

νj−1 ,lj+1/2
nj (cos 2ϕj), (11)

where P
νj−1 ,lj+1/2
nj (cos 2ϕj) are Jacobi polynomials [52], with

νj = Kj +
3

2
j− 1, (12)

and the normalization factorsN l,ν
n are given by

N l,ν
n =

√

2νŴ(ν − n)Ŵ(n+ 1)

Ŵ(ν − n− l− 1/2)Ŵ(n+ l+ 3/2)
, (13)

with Ŵ indicating the standard Gamma function [52]. To be
noticed that for A = 3, j = 1, 2, and since n1 = 0, there is
only one index n2 ≡ n. In this case, K = l1 + l2 + 2n. For
the convergence on n or alternatively K, see the discussion in
section 3. With the definition of Equation (9), the HH functions
are eigenvectors of the grand-angular momentum operator
32

N(�N), the square of the total orbital angular momentum L, its
z component Lz , and the parity operator5. Therefore we have

32
N(�N)Y

KLML
[K] (�N) = K(K + 3N − 2)YKLML

[K] (�N), (14)

L2YKLML
[K] (�N) = h̄2L(L+ 1)YKLML

[K] (�N), (15)

LzY
KLML
[K] (�N) = h̄MLY

KLML
[K] (�N), (16)

5Y
KLML
[K] (�N) = (−1)KYKLML

[K] (�N). (17)

We remark here two useful properties of the HH functions. First
of all, the HH functions are orthonormal with respect to the
volume element d�N , i.e.,

∫

d�N [Y
K′L′M′

L
[K′] (�N)]

∗ Y
KLML
[K] (�N) = δ[K][K′]δKK′δLL′δMLM

′
L
,(18)

with

dx1 · · · dxN = ρ3N−1dρ d�N (19)

and

d�N = sin θ1dθ1dφ1

N
∏

j=2

sin θjdθjdφj (cosϕj)
2 (sinϕj)

3j−4dϕj. (20)

Therefore, the number of HH functions for a given K
increases fast with K, but is always finite. In fact, according
with Equation (10), K =

∑

i=1,N(li + 2ni). Furthermore,
independently of the specific choice of Jacobi coordinates used
to define the hyperspherical ones or of the order of the coupling
of the spherical harmonics in Equation (9), the HH functions
constitute a complete basis.

Secondly, in order to evaluate matrix elements of a given
many-body operator between HH functions, it is often useful
to determine the effect of a particles permutation on an HH
function. Since the grand-angular and the total orbital angular
momenta are fully symmetric, and since the HH functions
constitute a complete basis, the permuted HH functions
Y
KLML
[K] (�

p
N) can be written as linear combinations of unpermuted
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HH functions Y
KLML
[K′] (�N) with same K, L, and ML values.

Therefore, we can write

Y
KLML
[K] (�

p
N) =

∑

[K′]

a
KL,p
[K];[K′]Y

KLML
[K′] (�N). (21)

The transformation coefficients a
KL,p
[K];[K′] do not depend on

the quantum number ML. For A = 3, they are called the
Raynal-Revai coefficients [53]. To be remarked that [K ′] ≡
[l′1, . . . , l

′
N , L

′
2, . . . , L

′
N−1, n

′
2, . . . , n

′
N], but such that K ′ = K. Note

that L is conserved. For A > 3, see references [42, 54].
Let us consider more specifically a system of A nucleons

described within the isospin formalism. The A-nucleon wave
function contains spatial, spin, and isospin parts. We can define

the spin functions χ
SMS
[S] with total spin S and total spin projection

MS and the isospin functions ξ
TMT
[T] with total isospin T and total

isospin projection MT by coupling the individual spin functions
χ1/2,±1/2 or isospin functions ξ1/2,±1/2, respectively, of each
nucleon, as

χ
SMS
[S] = [[. . . [χ1/2(1)χ1/2(2)]S2 . . . χ1/2(N − 1)]SN−1χ1/2(N)]SMS , (22)

ξ
TMT
[T] = [[. . . [ξ1/2(1)ξ1/2(2)]T2 . . . ξ1/2(N − 1)]TN−1ξ1/2(N)]TMT . (23)

So now [S] stands for [S2, . . . , SN−1] and [T] for [T2, . . . ,TN−1].
Including the spin and isospin functions, the HH basis

functions read

Y
KLSJJzTMT
[KST] (�N) = [YKL

[K](�N)χ
S
[S]]JJzξ

TMT
[T] , (24)

where J is the total angular momentum, Jz its projection,
and [KST] stands for [K][S][T]. To be noticed that also the
spin-isospin part of Y

KLSJJzTMT
[KST] (�N) constructed with a given

ordering of the particles, can be rewritten in terms of a different
permutation, using the Wigner 6j coefficients [55].

We conclude by noting that the HH functions can also be
built in momentum space instead of configuration space. They
can be obtained by replacing the hyperspherical coordinates
(ρ,�N) associated with the Jacobi coordinates {xi}i=1,...,N by

the hyperspherical coordinates (Q,�
(q)
N ) associated with the N

Jacobi conjugate momenta {qi}i=1,...,N . The rest of the formalism
remains unchanged. For more details, see references [19, 30, 56].

2.2. The HH Method for A = 3 and 4
We discuss in some detail the method for systems with A =
3, 4 nucleons within the isospin formalism for both bound and
scattering states in sections 2.2.1 and 2.2.2, respectively. The
extension to A > 4 is straightforward, but leads to more
lengthy expressions.

2.2.1. The A = 3 and 4 Bound States
The wave function of an A-body bound state, with A = 3, 4,
having total angular momentum J, Jz and parity π , and third
component of the total isospinMT , can be decomposed as a sum
of Faddeev-like amplitudes as:

9A =

Np
∑

p=1

ψ(x
(p)
1 , · · · , x

(p)
N ). (25)

Here the sum on p runs up to Np = 3 or 12 even permutations
of the A particles, with A = 3 or 4, respectively, and the

coordinates x
(p)
1 , · · · , x

(p)
N are the Jacobi coordinates as defined

in Equation (3), but here we show explicitly the dependence on
the permutation p. To be noticed that, increasing the number
of particles, different arrangements of them in sub-clusters allow
for different definitions of the Jacobi coordinates. For example, in
A = 4 two different sets exist corresponding to have a 3+1 or a
2+2 asymptotic configuration. However in the sub-space defined
by the grand-angular momentum K, HH functions defined in
different sets of Jacobi coordinates result to be linearly dependent.
In the following we always refer to the set defined in Equation (3).

The coordinate-space hyperspherical coordinates are given
in Equations (5)–(7), and the hyperangular variables are ϕ2 for
A = 3 and ϕ2,ϕ3 for A = 4.

We rewrite here the HH basis of Equation (24) for the A = 3
and 4 cases. Historically, the angular, spin and isospin quantum
numbers have been collected in the so-called channels α, defined
explicitly by

[α] = [l1α , l2α , Lα , Saα , Sα ,Taα ,Tα]; A = 3 (26)

[α] = [l1α , l2α , l3α , L2α , Lα , Saα , Sbα , Sα ,Taα ,Tbα ,Tα]; A = 4 (27)

so that we can write

Y
K
[α]n2

(�N ) =

[

[Yl1α (x̂1)Yl2α (x̂2)]Lα

[

[χ1/2(1)χ1/2(2)]Saα χ1/2(3)
]

Sα

]

JJz
[

[ξ1/2(1) ξ1/2(2)]Taα ξ1/2(3)
]

TαMT

(2)
P

l1α ,l2α
n2

(ϕ2), (28)

for A = 3, and

Y
K
[α]n2n3

(�N) =

[

[

[Yl1α (x̂1)Yl2α (x̂2)]L2αYl3α (x̂3)
]

Lα

[[

[χ1/2(1)χ1/2(2)]Saα χ1/2(3)
]

Sbα
χ1/2(4)

]

Sα

]

JJz
[[

[ξ1/2(1) ξ1/2(2)]Taα ξ1/2(3)
]

Tbα
ξ1/2(4)

]

TαMT

(2)P l1α ,l2α
n2

(ϕ2)
(3)P2n2+l1α+l2α ,l3α

n3
(ϕ3), (29)

for A = 4. To be noticed that, in order to ensure the
antisymmetry of the wave function, the Faddeev-like amplitudes
have to change sign under exchange of particle 1 and 2. Therefore,
the sum l2α + Saα + Taα for A = 3 and l3α + Saα + Taα for
A = 4 must be odd. Furthermore, l1α + l2α for A = 3 and
l1α + l2α + l3α for A = 4 must be an even or odd number
in correspondence to a positive or negative parity state. Even
with these restrictions, there is an infinite number of channels.
However, the contributions of the channels with higher and
higher values for l1α + l2α for A = 3 and l1α + l2α + l3α for A = 4
should become less and less important, due to the centrifugal
barrier. Therefore, it is found that the number of channels with
a significant contribution is relatively small for bound and low-
energy scattering states. The most important ones for A = 3 and
for A = 4 are listed, respectively, in Tables 1, 2 of reference [19].
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By using Equations (28) and (29), the A-body wave function
9A of Equation (25) can be written in coordinate-space as

9A =
∑

α,n2

uαn2 (ρ)

Np
∑

p=1

Y
K
[α]n2

(�
(p)
2 ), (30)

for A = 3, and

9A =
∑

α,n2 ,n3

uαn2n3 (ρ)

Np
∑

p=1

Y
K
[α]n2n3

(�
(p)
3 ), (31)

for A = 4. The sum over n2 in Equation (30) and n2, n3
in Equation (31) is restricted to independent states, see below.
The hyperradial functions uαn2 (ρ) (uαn2n3 (ρ) for A = 4) are
themselves expanded in terms of known functions. It is common
to use Laguerre polynomials multiplied by an exponential
function, as they have been found to give a nice convergence of
this expansion. Therefore,

uαn2/αn2n3 (ρ) =

NL
∑

m=0

cαn2/αn2n3;m fm(ρ), (32)

where the sum is truncated at NL, and the functions fm(ρ) are
written as

fm(ρ) = γD/2

√

m!

(m+ D− 1)!
L(D−1)
m (γρ) e−γρ/2. (33)

Here D ≡ 3N− 1, L
(D−1)
m (γρ) is a Laguerre polynomial [52], and

γ is a non-linear parameter, to be variationally optimized. The
exponential factor e−γρ/2 ensures that fm(ρ) → 0 for ρ → ∞.
The optimal value of γ depends on the potential model, and it is
typically in the interval 2.5–4.5 fm−1 for local and 4–8 fm−1 for
non-local potentials. Also NL depends on the potential models,
but typically with NL ∼ 20 − 30 a convergence at the 1 keV (10
keV) level for the A = 3 (A = 4) binding energies is achieved.

When working in momentum space, the A-body wave
function 9A is written as in Equations (30) and (31), with
uαn2 (ρ) and uαn2n3 (ρ) replaced with wαn2 (Q) and wαn2n3 (Q), i.e.,
functions of the hypermomentum Q, while the HH functions
are expressed in terms of conjugate Jacobi momenta. The w-
functions are related to the u-functions as

wαn2/αn2n3 (Q) = (−i)K
∫ ∞

0
dρ

ρD−1

(Qρ)D/2−1
JK+ D

2 −1(Qρ) uαn2/αn2n3 (ρ),

(34)
where JK+D

2 −1(Qρ) are Bessel functions of the first kind [19], and

K is again the grand-angular momentum.
At the end, the A-body wave function of Equations (30)–(34)

can be cast in the form

9A =
∑

K,m

cK;m|K,m〉, (35)

where

|K,m〉 ≡ fm(ρ)

Np
∑

p=1

Y
K
[α]n2/[α]n2n3

(�
(p)
N ) (36)

in coordinate-space (a similar expression holds in momentum-
space). The decomposition proposed in Equation (25) ensures
the complete antisymmetrization of the state through the sum
on the permutations as indicated in Equation (36). Indeed,
the hyperangular-spin-isospin basis state |K,m〉 is completely
antisymmetric. However, the sum over the permutations for fixed
values of K produces linear dependent states that have to be
individuated and eliminated from the basis set [42, 54, 57]. This
procedure could be delicate from a numerical point of view as
the number of K increases. In such a case, one needs a robust
orthonormal procedure capable to deal with the presence of
large numerical cancellations. However, if one is successful in
this step, at the end one can work with a basis of independent
antisymmetrical states, whose number is noticeably less than
the degeneracy of the full HH basis. Attempts to use the HH
basis without symmetrization has been recently proposed [41].
The idea is then to use the complete HH basis in which all
symmetries are represented to describe a particular state. The
diagonalization of the Hamiltonian produces eigenvectors with
well-defined permutation properties reflecting the symmetries in
it. Different applications followed this procedure for bosons as
well as for fermions (see references [41, 58–61]). The advantage
of eliminating the orthonormalization of the states has to be
balanced by the fact that in this case one has to work with the
full basis of HH functions, whose degeneracy rapidly increases
with K and the number of particles A.

Once the antisymmetric state |K,m〉 is constructed, what is left
is to obtain the unknown coefficients cK;m of the expansion. In
order to do so, we apply the Rayleigh-Ritz variational principle,
which states that the quantity 〈9A|H − E|9A〉 is stationary with
respect to the variation of any unknown coefficient. Here H is
the nuclear Hamiltonian and E = −B the energy of the state,
which, in the case of a bound state, is negative and opposite to
the binding energy B.

When differentiating respect to cK;m we obtain the
following equation

∑

K′,m′

〈K,m|H|K ′,m′〉cK′;m′ = E
∑

K′,m′

〈K,m|11|K ′,m′〉cK′;m′ , (37)

where the matrix elements of the Hamiltonian H and of the
identity operator 11 can be calculated with standard numerical
techniques (see reference [19] for more details). Equation (37)
represents a generalized eigenvalue-eigenvector problem, which
can be solved with a variety of numerical algorithms.Widely used
within the HH method is the Lanczos algorithm [62], since the
HH basis can become quite large (up to about 10,000 terms for
A = 3 and about one order of magnitude larger for A = 4 are
used in practice).

The results obtained solving Equation (37) for a variety of
nuclear interaction models will be presented in section 3.

2.2.2. The A = 3 and 4 Scattering States
The HHmethod has been also applied to the scattering problem.
In particular, the method can study the elastic N + Y → N + Y
process, where N is a nucleon and Y a bound system (AY +
1 ≡ A = 3, 4), both below and above the Y nucleus breakup
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threshold. The extension of the HH method to the full breakup
problem, i.e., for A = 3 the process n + d → n + n + p, is
currently underway and will not be discussed here.

The wave function 9
LSJJz
NY describing the N + Y scattering

state with incoming orbital angular momentum L, channel spin

ES ≡ E1
2+

ESY , parity π = (−1)L, and total angular momentum J, Jz ,
is written as

9
LSJJz
NY = 9

LSJJz
C +9LSJJz

A . (38)

Here we have introduced 9
LSJJz
C , which is the so-called “core”

wave function, describing the system in the region where all the
particles are close to each other and their mutual interaction

is strong, and 9
LSJJz
A , which is the so-called “asymptotic” wave

function, describing the relative motion between nucleon N and
nucleus Y in the asymptotic region, where the N − Y interaction
is negligible or reduces to the Coulomb interaction in the case of

N ≡ p. The core function 9
LSJJz
C has to vanish at large N − Y

distances, and can be expanded in terms of the HH basis as for
the bound state. Therefore, using Equation (35), we can write

9
LSJJz
C =

∑

K,m

cK;m|K,m〉. (39)

The asymptotic wave function 9
LSJJz
A is the solution of the

Schrödinger equation of the relative N + Y motion. It is written
as a linear combination of the following functions

�λLSJJz =
C

√

Np

Np
∑

p=1

[[χ1/2(N) φSY (Y)]S YL(ŷp)]JJzR
λ
L(yp). (40)

Here we have indicated with C a normalization factor [to be
explained below, see Equation (49)]. The sum runs over the Np

even permutations of theA nucleons necessary to antisymmetrize
the function �λLSJJz , χ1/2(N) and φSY (Y) are the nucleon N and
nucleus Y wave functions, respectively, and yp is the relative
distance betweenN and the c.m. of nucleus Y and is proportional
to xN−j+1 of Equation (3). Furthermore, YL(ŷp) is the standard

spherical harmonic function, and the functions RλL(yp) for λ =
R, I are respectively the regular and irregular solutions of the
two-body N + Y Schrödinger equation without the nuclear
interaction. They are explicitly written as [19, 31]

RRL(yp) =
1

(2L+ 1)!!qLCL(η)

FL(η, qyp)

qyp
, (41)

RIL(yp) = (2L+ 1)!!qL+1CL(η)f (b, yp)
GL(η, qyp)

qyp
, (42)

where q is the modulus of the N − Y relative momentum, such
that the total kinetic energy in the c.m. frame is Tc.m. = q2/2µ, µ
being the N − Y reduced mass, η = ZNZYµe

2/q is the Coulomb
parameter, where ZN and ZY are the charge numbers of N and
Y , and FL(η, qyp) and GL(η, qyp) are the regular and irregular
Coulomb functions defined in the standard way [52]. The factor
CL(η) is defined in reference [52] as

CL(η) =
2Le−

πη
2 |Ŵ(L+ 1+ iη)|

Ŵ(2L+ 2)
. (43)

The factor (2L + 1)!!qLCL(η) has been introduced so that the
functions RRL(yp) and R

I
L(yp) have a finite limit for q → 0. Finally,

the function f (b, yp) in Equation (42) is given by

f (b, yp) = [1− e−byp ]2L+1, (44)

so that the divergent behavior of GL(η, qyp) for small values of
yp is cured, and RIL(yp) is well-defined also in this limit. The
trial parameter b is determined by requiring f (b, yp) → 1 for
large values of yp, leaving therefore unchanged the asymptotic
behavior of the scattering wave function. A value of b ∼ 0.25
fm−1 has been found appropriate in all the considered cases.
The non-Coulomb case of Equations (41) and (42) is obtained
if either ZN or ZY = 0, so that the functions FL(η, qyp)/(qyp) and
GL(η, qyp)/(qyp) are replaced by the regular and irregular Riccati-
Bessel functions jL(qyp) and nL(qyp) as defined in reference [52],
and the factor (2L+ 1)!!CL(η) reduces to 1 for η→ 0 [52].

With these definitions,9
LSJJz
A can be cast in the form

9
LSJJz
A =

∑

L′S′

[

δLL′δSS′�
R
L′S′JJz

+R
J
LS,L′S′ (q)�

I
L′S′JJz

]

, (45)

where the parametersRJ
LS,L′S′ (q) give the relative weight between

the regular and irregular components of the wave function. These
parameters can be written in terms of the reactance matrix
(K-matrix) elements as [19, 31]

K
J
LS,L′S′ (q) = (2L+ 1)!!(2L′ + 1)!!qL+L′+1CL(η)CL′ (η)R

J
LS,L′S′ (q). (46)

The K-matrix, by definition, is such that its eigenvalues are
tan δLSJ , δLSJ being the phase shifts. The sum over L′ and S′ in
Equation (45) is over all values compatible with a given J and
parity π , and therefore the sum over L′ is limited to include either

even or odd values since (−1)L
′
= π .

Using Equations (39) and (45), the full scattering wave
functions is written as

9
LSJJz
NY =

∑

K,m

cK;m|K,m〉 +
∑

L′S′

[

δLL′δSS′�
R
L′S′JJz

+R
J
LS,L′S′ (q)�

I
L′S′JJz

]

, (47)

where the unknown quantities are the coefficients cK;m and

R
J
LS,L′S′ (q). In order to determine their values, we use the Kohn

variational principle [63], which states that the functional

[RJ
LS,L′S′ (q)] = R

J
LS,L′S′ (q)−

〈

9
L′S′JJz
NY |H − E|9LSJJz

NY

〉

, (48)

has to be stationary with respect to variations of the trial

parameters cK;m and R
J
LS,L′S′ (q) in 9

LSJJz
NY . Here E is the total

energy of the system, and the normalization coefficients C of the
asymptotic functions�λLSJJz in Equation (40) are chosen so that

〈�R
LSJJz

|H − E|�I
LSJJz

〉 − 〈�I
LSJJz

|H − E|�R
LSJJz

〉 = 1. (49)
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The variation of the diagonal functionals of Equation (48) with
respect to the linear parameters cK;m leads to a system of linear
inhomogeneous equations,

∑

K′,m′

〈K,m|H − E|K ′,m′〉cλK′;m′ = −D
λ,LSJJz
K,m , (50)

where the two terms Dλ corresponding to λ ≡ R, I are defined as

D
λ,LSJJz
K,m = 〈K,m|H − E|�λLSJJz 〉. (51)

Therefore, two sets of the coefficients cλK;m are obtained,
depending on λ ≡ R, I, and consequently, we can introduce two
core functions, defined as

9
LSJJz ,λ
C =

∑

K,m

cλK;m|K,m〉. (52)

Thematrix elementsRJ
LS,L′S′ (q) are obtained varying the diagonal

functionals of Equation (48) with respect to them. This leads to
the following set of algebraic equations

∑

L′′S′′

R
J
LS,L′′S′′ (q)XL′S′ ,L′′S′′ = YLS,L′S′ , (53)

with the coefficients X and Y defined as

XLS,L′S′ = 〈�I
LSJJz

+9LSJJz ,I
C |H − E|�I

L′S′JJz
〉,

YLS,L′S′ = −〈�R
LSJJz

+9LSJJz ,R
C |H − E|�I

L′S′JJz
〉. (54)

The solution of Equation (53) provides a first-order estimate
of the matrix elements R

J
LS,L′S′ (q). A second-order estimate

of RJ
LS,L′S′ (q), and consequently of KJ

LS,L′S′ (q), is given by the

quantities [RJ
LS,L′S′ (q)], obtained by substituting in Equation (48)

the first order results of Equations (50) and (53). Such second-
order calculation provides then a symmetric K-matrix. This
condition is not imposed a priori, and therefore it is a useful test
of the numerical accuracy reached by the method.

The Kohn variational principle as explained so far is
particularly useful in the case of q = 0 (zero-energy scattering).
For q = 0 the scattering can occur only in the L = 0 channel, and
the observables of interest are the scattering lengths. Within the
present approach, they can be easily obtained from the relation

(2J+1)aNY = − lim
q→0

R
J
0J,0J(q), (55)

from which

9
0JJJz
A =

[

�R
0JJJz

− (2J+1)aNY�
I
0JJJz

]

. (56)

An alternative version of the Kohn variational principle is the
so-called complex Kohn variational principle for the S-matrix,
quite convenient when q 6= 0 and especially above the Y nucleus
breakup threshold, as explained in reference [64]. In this case, the
Kohn variational principle of Equation (48) becomes

[SJ
LS,L′S′ (q)] = S

J
LS,L′S′ (q)+ i〈9+,L′S′JJz

NY |H − E|9+,LSJJz
NY 〉, (57)

where

9
+,LSJJz
NY = 9

LSJJz
C +9+,LSJJz

A , (58)

9
LSJJz
C being expanded as in Equation (39) and

9
+,LSJJz
A = [ i�R

LSJJz
−�I

LSJJz
]

+
∑

L′S′

S
J
LS,L′S′ (q)[ i�

R
L′S′JJz

+�I
L′S′JJz

]. (59)

The functions�λLSJJz have been given in Equation (40). Note that,
with the above definition, the reactance K-matrix elements can
be related to the S-matrix elements as

K
J
LS,L′S′ (q) = (−i)[SJ

LS,L′S′ (q)− δLL′δSS′ ]

[SJ
LS,L′S′ (q)+ δLL′δSS′ ]

−1. (60)

The differentiation of the complex Kohn variational principle of
Equation (57) leads to a set of equations for cK;m and S

J
LS,L′S′ (q)

similar to those given in Equations (50) and (53), where now λ
stands for λ = +,−.

We conclude this section with the following remarks: (i) the
calculation of the matrix elements between the core functions
9

LSJJz
C can be performed with the HH expansion either in

coordinate- or in momentum-space, depending on what is more
convenient. Therefore, regarding this part, we can apply the
method with any potential model, both local or non-local. (ii)
Some difficulties arise with the calculations of the potential
matrix elements which involve �λLSJJz , i.e., 〈K,m|V|�λLSJJz 〉

present in Equation (51), and 〈�λ
′

L′S′JJz
+ 9

L′S′JJZ ,λ
′

C |V|�λLSJJz 〉 of

Equation (54), with λ, λ′ = R, I. In particular, we note that,
being �λLSJJz given in coordinate-space, which is particularly
suitable when the Coulomb interaction is considered, as for p −
d scattering, the non-local potential expressed in momentum-
space is Fourier transformed to work in coordinate-space. The
consequent integration on the momentum transfer are easily
performed for the recent chiral and Vlow−k potential models,
but not for the non-local meson-theoretic CDBonn potential
model, which has a high-momentum tail. Therefore, the CDBonn
potential model has not been used in the study of the scattering
processes presented here. We further refer to reference [31] for
all technical details. (iii) The three-nucleon interaction models
which at the moment have been implemented with the HH
method are only the local ones, like the Urbana IX potential
(UIX) of reference [65] and the N2LO model of reference [66].
The models used so far, besides being local, have a well-defined
operatorial structure. In this case, the projection procedure
as used for the two-nucleon interaction is not needed and
the approach follows well-established footsteps, as explained in
references [67, 68].

3. SELECTED RESULTS

We present in this section selected results obtained with the HH
method described above. The method has been applied widely
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since many years, and therefore a selection is mandatory. We
have followed these criteria: (i) we focus on the results obtained
after 2008, year of the publication of the review of reference [19]
on the same method. (ii) We restrict ourselves to the potential
models, mostly discussed in the Research Topic of which this
contribution is part. They are the most widely used models.
(iii) We concentrate on the results obtained for the A = 3, 4
elastic scattering observables, but we present briefly also the
corresponding bound state results.

The aim of this section is two-fold: first of all we wish to show
the effectiveness of the HH method for few-nucleon systems;
secondly, we want to emphasize that the HH method, as well as
any ab initiomethod, is an essential tool for testing and eventually
improving nuclear interaction models.

All the results presented here are obtained at convergence,
i.e., the HH expansion and the expansion on the Laguerre
polynomials [see Equations (32) and (33)] has been pushed
so that an accuracy of 1 keV (10 keV) is reached for the
A = 3 (A = 4) binding energies, and the numerical accuracy
on the scattering lengths is of the order of 0.001 fm. For a
discussion on the convergence of the expansion see, for instance,
references [30, 31].

The potentials which will appear in the following subsections
include both two- and three-nucleon interactions. They are
the phenomenological two-nucleon interaction Argonne v18
(AV18) [4], augmented by the three-nucleon Urbana IX (UIX)
model [65], the meson-theoretic CDBonn potential [5] (CDB),
together with the three-nucleon Tucson-Melbourne [69, 70]
(TM) model, and the Vlow−k potential [71], obtained from the
AV18 with 3 = 2.2 fm−1, so that the triton binding energy
is reproduced. We consider in addition also chiral potentials,
in particular the two-nucleon interaction models of the Idaho
group of reference [72], obtained at next-to-next-to-next-to-
leading order (N3LO), and here labeled with N3LO-I, and the
more recent models derived by the same group in reference [73],
here labeled according to the chiral order, i.e., from leading
order (LO) up to next-to-next-to-next-to-next-to leading order
(N4LO). All these two-nucleon models have been augmented
with a (local) three-nucleon interaction derived up to N2LO as
in reference [66]. The momentum-cutoff value is set equal to
3 = 500 MeV, unless differently specified. Note that the low-
energy constants (LECs) cD and cE are those of reference [66]
when the N2LO three-nucleon interaction is used in conjunction
with the N3LO-I two-nucleon potential, while the LECs are
those of reference [74] when the N2LO three-nucleon interaction
is used in conjunction with the N2LO, N3LO, and N4LO
two-nucleon interactions of reference [73] (no three-nucleon
interaction is present at lower chiral order). To be remarked
that the LECs cD and cE, and more generally the parameters
entering the three-nucleon interaction model, depend on which
two-nucleon interaction is used, as well as on which set of
observables is used for their determination. This is why, for
instance, the N2LO three-nucleon interaction in conjunction
with the N2LO two-nucleon interaction has different values for
the LECs compared to those present in the same three-nucleon
interaction considered together with the N3LO or N4LO two-
nucleon interaction. Finally, we will present results obtained also

with the minimally non-local chiral potentials of the Norfolk
group, as derived in reference [75] for the two-nucleon, and in
references [1, 76] for the three-nucleon interaction. The two-
nucleon models are labeled NVIa, NVIIa, NVIb, and NVIIb
depending on the cutoff value and the maximum laboratory
energy of the considered NN database. When the three-nucleon
interaction are included, we will refer to NV2+3/Ia, NV2+3/IIa,
and so on, corresponding to the fitting procedure of reference [1],
and NV2+3/Ia*, NV2+3/IIa*, and so on, corresponding to the
fitting procedure of reference [76]. We discuss in more details
these fitting procedures below, and we refer the reader to
the original references, or to the contributions present in this
Research Topic. To be noticed that when the HH method is

TABLE 1 | The binding energies in MeV for 3H, 3He, and 4He, calculated with the

HH technique using different Hamiltonian models.

Interaction 3H 3He 4He

AV18 7.624 6.925 24.21

AV18/UIX 8.479 7.750 28.46

CDB 7.998 7.263 26.13

CDB/TM 8.474 7.720 29.00

N3LO-I 7.854 7.128 25.38

N3LO-I/N2LO 8.474 7.733 28.36

LO 11.091 10.409 40.09

NLO 8.307 7.597 27.55

N2LO 8.206 7.460 27.23

N3LO 8.092 7.343 26.68

N4LO 8.080 7.337 26.58

N2LO/N2LO 8.474 7.729 27.92

N3LO/N2LO 8.477 7.728 27.97

N4LO/N2LO 8.477 7.728 28.15

NVIa 7.818 7.090 25.15

NVIIa 7.949 7.213 25.80

NVIb 7.599 6.885 23.96

NVIIb 7.866 7.133 25.28

NV2+3/Ia 8.475 7.735 28.33

NV2+3/IIa 8.475 7.730 28.16

NV2+3/Ib 8.475 7.737 28.30

NV2+3/IIb 8.475 7.727 28.15

NV2+3/Ia* 8.477 7.727 28.30

NV2+3/IIa* 8.474 7.725 28.18

NV2+3/Ib* 8.469 7.724 28.21

NV2+3/IIb* 8.474 7.724 28.11

Experiment 8.475 7.725 28.30

The underlined values are used in the LECs fitting procedure. In the last row, we show

the 3H (3He) experimental binding energy of 8.482 MeV (7.718 MeV), lowered (increased)

by 7 keV in order to take into account the n − p mass difference. See text for more

details. All the results presented here are in very good agreement with the values reported

in the literature. The experimental binding energies are taken from reference [78]. The

experimental uncertainty is well below the 1 keV level, and therefore it is not quoted in

the table.
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used to study the bound states, the local AV18, AV18/UIX,
NV, and NV2+3 potentials have been all augmented by the full
electromagnetic interaction, which includes corrections up to α2

(α is the fine-structure constant) [77]. On the other hand, the
non-local CDB, CDB/TM, and all the non-local chiral potentials
retain only the point-Coulomb interaction. The point-Coulomb
interaction, and not the full electromagnetic one, is also used
when studying the scattering states presented below.

3.1. A = 3, 4 Bound States
The results for the trinucleon and 4He binding energies,
obtained using all the above mentioned potentials, are given
in Table 1. To be noticed that in many cases, the experimental
trinucleon binding energy is used for the LECs fitting procedure
performed applying the HH method. When this occurs, the
corresponding HH results is underlined in the table. The results
not underlined are obtained using the “original” two- and three-
nucleon interactions, whose parameters are usually fitted to
the triton binding energy and other observables, applying ab
initio methods different than the HH method. The HH results
are therefore not necessarily in perfect agreement with the
experimental data.

We briefly outline the fitting procedure for the LECs cD
and cE in order to better understand the results, and we refer
to references [1, 76, 79] for more details. The 3H and 3He
ground state wave functions are calculated using a given two-
and three-nucleon potential, and the corresponding LECs cD and
cE are determined by fitting the A = 3 experimental binding
energies, corrected for a small contribution (+7 keV in 3H
and −7 keV in 3He), due to the n − p mass difference [44],
since in the present HH method this effect is neglected. This
procedure generates two trajectories, one for 3H and one for
3He, in the {cD, cE} plane, so that each point of the trajectory
corresponds to the correct binding energy. The two trajectories

TABLE 2 | n− d and p− d doublet and quartet scattering lengths in fm calculated

with the HH technique using different Hamiltonian models.

Interaction 2and
4and

2apd
4apd

AV18 1.275 6.325 1.185 13.588

AV18/UIX 0.610 6.323 -0.035 13.588

Vlow−k 0.572 6.321 -0.001 13.571

N3LO-I 1.099 6.342 0.876 13.646

N3LO-I/N2LO 0.675 6.342 0.072 13.647

NVIa 1.119 6.326 0.959 13.596

NVIb 1.307 6.327 1.294 13.597

NV2+3/Ia* 0.638 6.326 0.070 13.596

NV2+3/Ib* 0.650 6.327 0.070 13.597

Experiment 0.645±0.003± 0.007 6.35±0.02 −0.13± 0.04 14.7± 2.3

The experimental value for 2and is from reference [82], that for 4and is from reference [83],

while those for 2apd and
4apd are from reference [84].

are typically extremely close to each other and the average
can be safely considered, since the points of the average
trajectory typically lead to A = 3 binding energies within
10 keV of the experimental values. A second observable is
needed in the fitting procedure. In reference [1] the n − d
doublet scattering length 2and has been used, which leads in
the {cD, cE} plane to another trajectory, which is very close
to the one corresponding to the 3H binding energy, but not
exactly overlapping. This is a well-known fact, that the 3H
binding energy and 2and are correlated observables. However, it
is possible to find an intersection point of the two trajectories,
which allows to determine the LECs. This procedure has been
used for the NV2+3/Ia, NV2+3/Ib, NV2+3/IIa, and NV2+3/IIb
potential models. The corresponding {cD, cE} values, as given in
Table 1 of reference [1], are {3.666,−1.638}, {−2.061,−0.982},
{1.278,−1.029}, {−4.480,−0.412}, respectively. Alternatively we
can choose as the second observable the Gamow-Teller matrix
element of tritium β-decay, to take advantage of the fact that
the LEC cD enters also in the two-nucleon axial current operator
at N2LO [76, 79–81]. This second procedure has been used for

FIGURE 1 | The vector analyzing powers Ay and iT11 for p− d elastic

scattering at center-of-mass energy Ec.m. = 2 MeV, using models in the

AV18/TM class (cyan bands), AV18/UIX (violet bands), and AV18/N2LO (red

bands). The predictions of the original AV18/UIX model (solid lines) and the

experimental points from reference [86] are also shown.
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the N2LO/N2LO, N3LO/N2LO, and N4LO/N2LO potentials of
reference [74], and the NV2+3/Ia*, NV2+3/Ib*, NV2+3/IIa*, and
NV2+3/IIb* potential models of reference [76]. In this last case,
we report the corresponding {cD, cE} values for completeness,
which are {−0.635,−0.090}, {−4.710, 0.550}, {−0.610,−0.350},
{−5.250, 0.050}, respectively.

We can now proceed with some comments regarding the
binding energies results of Table 1. (i) The large variety of models
for the nuclear interaction which the HH method can handle
is an indication of how strong and reliable this method has
become. Furthermore, we should mention that the theoretical
uncertainty is of 1 keV (10 keV) for the A = 3 (4He) binding
energies. The HH method is therefore extremely accurate.
Furthermore, all the HH results are in very good agreement
with the values reported in the literature, when available. (ii)
In order to reproduce the experimental binding energies the
inclusion of three-nucleon force is essential. In all cases, the
triton binding energy is well-reproduced, within few keV. On
the other hand, the 4He binding energies can differ from the
experimental value of even up to 700 keV (in the CDB/TM
case). (iii) In the case of the NV2+3 potential models, when the
observables used to fit the LECs are the triton binding energy
and 2and, we notice a systematic overestimation of the 3He
binding energy. (iv) All the results for the A = 3 (A = 4)
binding energies obtained with any model for the two- and
three-nucleon interaction are within 10 (400) keV from the
experimental values. Therefore we can conclude that any of the
constructed model is essentially able to reproduce these very
light nuclei.

3.2. N − d Scattering
One of the remarkable features of the HH method resides in
its capability of dealing with local as well as with non-local
potentials, formulated in either coordinate or momentum space,
not only for the bound states, as we have seen above, but also
for N − d scattering observables. This has been demonstrated in
reference [31], in which the local AV18 and the non-local chiral
N3LO-I potential models were used to calculate the N − d elastic
scattering observables below the deuteron breakup threshold.
Here we present results with a subset of all the potential models
mentioned above, and in particular with the AV18, AV18/UIX,
the N3LO-I, N3LO-I/N2LO, and some of the NV and NV2+3

models. A further class of nuclear interactions that has been
tested using the HH method is represented by the so-called
Vlow−k potential obtained from the AV18 with 3 = 2.2 fm−1, so
chosen to reproduce the triton binding energy when the complete
electromagnetic interaction is used [71]. We do not report here
detailed investigations on the convergence of the HH expansion,
but we can mentioned that this convergence is faster for the non-
local potentials as compared to the local ones, due to the much
softer behavior at small distances. For instance, for N − d elastic
scattering in the channel Jπ = 1/2+, the HH basis can be of the
order of 12000 (7000) elements with the NV (N3LO-I) potential
to get convergence.

We first consider the converged results for the n − d and
p − d doublet and quartet scattering lengths, which are given
in Table 2, together with the very precise experimental result

TABLE 4 | χ2/datum of the two-parameter fit to p− d elastic scattering data at

Ec.m. = 2 MeV, obtained neglecting in Equation (61) all the subleading operators

except the leading contact term proportional to the LEC E0, and the tensor Sij and

spin-orbit (L · S)ij operators, proportional to the LECs E5 and E7, considered on top

of the AV18/UIX potential model.

3 (MeV) 200 300 400 500

χ2/datum 2.0 2.0 2.1 2.1

e0 −0.074 −0.037 0.053 0.451

e5 −0.212 −0.248 −0.403 −0.799

e7 1.104 1.195 1.686 2.598

〈AV18〉 (MeV) −7.353 −7.373 −7.394 −7.343

〈UIX〉 (MeV) −1.118 −1.095 −1.058 −1.031

〈E0〉 (MeV) −0.057 −0.069 0.125 0.841

〈E5Sij〉 (MeV) −0.032 −0.182 −0.609 −1.553

〈E7(L · S)ij〉 (MeV) 0.079 0.237 0.454 0.605

2and (fm) 0.611 0.618 0.626 0.638

4and (fm) 6.32 6.32 6.32 6.32

The LECs e0, e5, e7 are defined in terms of E0,E5,E7 as E0 = e0/(F
4
π3), Ei = ei (F

4
π3

3 ),

i = 5, 7, Fπ = 92.4 MeV being the pion decay constant, so that e0 ∼ ei ∼ O(1) if natural.

Also shown are the mean values in the triton state of the one- plus two-body Hamiltonian

(labeled as 〈AV18〉), of the UIX three-body potential (labeled as 〈UIX〉), and of individual

contributions from the short-distance three-body potential. The calculated values of 2and

and 4and are also given.

TABLE 3 | χ2/datum of the p− d elastic scattering observables at center-of-mass energies Ec.m. = 0.666, 1.33, 1.66 and 2.0 MeV, calculated with the N3LO-I or AV18

two-nucleon only, and the N3LO-I/N2LO or AV18/UIX two- and three-nucleon Hamiltonian models.

0.666 MeV 1.33 MeV 1.66 MeV 2.0 MeV

Ay iT11 T20 T21 T22 Ay Ay iT11 T20 T21 T22 Ay iT11 T20 T21 T22

N 7 8 24 24 24 38 44 50 50 50 50 38 51 51 51 51

AV18 283.3 113.4 6.9 4.7 2.8 186.0 267.6 121.3 1.9 3.2 6.6 237.1 148.8 3.7 5.1 12.5

AV18/UIX 205.2 67.0 3.2 3.5 1.1 112.4 264.7 110.1 4.2 7.2 2.1 202.4 115.0 6.4 14.3 2.2

N3LO-I 197.7 68.7 4.0 2.6 1.5 108.4 227.9 92.6 1.0 2.2 2.7 186.0 108.3 1.9 2.8 4.4

N3LO-I/N2LO 139.9 49.5 2.7 2.5 0.9 70.0 159.4 84.3 2.1 4.0 2.8 114.0 85.8 3.6 8.3 1.6

The different number N of experimental data is also indicated. The data are from references [89, 90] at Ec.m. = 0.666 MeV, and from reference [86] at Ec.m. = 1.33, 1.66, and 2.0 MeV.
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from reference [82] for 2and, and the older experimental results
from reference [83] for 4and. Though no experimental data
are available for 2apd and 4apd, the results of the energy-
dependent phase-shift analysis of reference [84], using very
low p − d data, is reported. All the results are obtained
using the pure Coulomb electromagnetic interaction. When
the full electromagnetic interaction is used, 4and remains
practically unchanged, while 2and becomes smaller. For the
NVIa and NVIb potentials, for instance, 2and = 1.103
fm and 1.293 fm, respectively, with the full electromagnetic
interaction. As it is clear from inspection of Table 2, while
4and is very little model-dependent and in good agreement
with experiment, the same is not true for 2and. In particular,
the inclusion of a three-nucleon force appears necessary to
bring the results closer to the experimental datum. However,

not every model agrees with the experiment. The disagreement
is more pronounced for the Vlow−k interaction, showing that
this observable cannot be simply reproduced by increasing
the attraction of the two-nucleon interaction, as is done in
this case by choosing the right value for 3 to describe
the triton; instead, a subtle balance between attraction and
repulsion in the three-nucleon system has to be reached. Indeed,
being the zero-energy n − d scattering state orthogonal to
the triton, the associated wave function presents a node in
the relative distance, whose precise position, which is related
to the scattering length, depends on the interplay between
attraction and repulsion. The results of the p − d phase-
shift analysis given in reference [84] are a first tentative to
determine the p − d scattering lengths from p − d data. Very
few experimental data exist for center-of-mass energies below

FIGURE 2 | Curves obtained including only the tensor and spin-orbit subleading contact operator on the top of the AV18/UIX interaction, fitted to a set of cross

section and polarization observables in p− d elastic scattering at 2 MeV center-of-mass energy [86], for 3 = 200− 500 MeV (red bands), are compared to the purely

two-body AV18 interaction (dashed black lines) and to the AV18/UIX two- and three-nucleon interaction (dashed-dotted blue lines).
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500 keV, introducing large uncertainties in the quartet case.
In the case of the doublet scattering length, difficulties arise
from the particular pole structure of the doublet p − d effective
range expansion close to threshold (see, for example, Figure 1 of
reference [84]).

With the purpose of investigating the capability of some
widely used models of three-nucleon interaction to reproduce
2and, a sensitivity study was conducted in reference [85]
taking the AV18 as the reference two-nucleon interaction.
Three different models of the three-nucleon interactions were
considered: the UIX, the TM and the chiral N2LO of
reference [66]. Their parameters were adjusted, constraining
them to reproduce simultaneously 2and and the triton binding
energy, and the resulting value for the 4He binding energy was
calculated. For the UIX model, a reasonable description of these
three observables was possible, at the cost of a sizable increase of

the repulsive term, as compared to the original parameterization.
A similar conclusion held for the TM model, where a repulsive
short-range term was found to be necessary. Finally, for the
N2LO three-nucleon interaction, the relative importance of
the parameters involving the P-wave pion rescattering had
to be changed. This is not surprising, due to the mismatch
between the physics underlying the adopted models for two-
and three-nucleon interactions. Also in this case, a repulsive
short-range interaction was preferred. Then, a set of polarization
observables on elastic p − d scattering were computed using the
AV18 augmented by the modified versions of the three-nucleon
interactions models as described above. These led to three
classes of interaction models. As an interesting result, all models
within a given class led to very similar predictions, but for
some observables, namely the proton Ay and the deuteron iT11.
These predictions were different from class to class, and all in

FIGURE 3 | Predictions obtained with the three-nucleon interaction models discussed in the text with 3 = 200− 500 MeV (red bands) for a set of cross section and

polarization p− d observables at 0.666 MeV center-of-mass energy, as compared to the purely two-body AV18 interaction (dashed black lines), to the AV18/UIX two-

and three-nucleon interaction (dashed-dotted blue lines), and to the experimental data of reference [90].
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disagreement with the data. This is shown in Figure 1. Since
the three classes of models mostly differ in their short-distance
behavior, it follows that an improvement in this component
of the three-nucleon interaction is needed to explain the data.
Indeed, no sensible improvement was obtained as compared to
the original AV18/UIX model.

In order to be more quantitative, as to the accuracy of the
existing models of two- and three-nucleon interaction, we show
inTable 2 the χ2/datum for all p−d elastic scattering observables

FIGURE 4 | n−3H total cross sections calculated with the AV18 (dashed black

line), AV18/UIX (solid black line), N3LO-I (dashed blue line), and the

N3LO-I/N2LO (solid red line) potential models as function of the incident

neutron laboratory energy En. The experimental data are from reference [91].

at different center-of-mass energies, as obtained with the AV18
and N3LO-I two-body interactions, without or with the inclusion
of the UIX and N2LO three-nucleon interaction models [31].
It is clear that all considered models fail to give a satisfactory
description of all polarization observables, especially for Ay and
iT11. From the previous discussion, there are strong hints that
the improvement should come from a more accurate modeling
of the short distance structure of the three-nucleon interaction.
Therefore, in reference [87] all the possible short-distance
(contact) structures for the three-nucleon interaction have been
classified up to the subleading order of a systematic low-energy
expansion. It has been found that the short-distance component
of the three-nucleon interaction can be parameterized by ten
LECs, denoted by Ei with i = 1, ..., 10. The corresponding
three-nucleon potential in configuration space can be written as

V3Ncont =
∑

i6=j 6=k

E0Z0(rij;3)Z0(rik;3)

+(E1 + E2τ i · τ j + E3σ i · σ j + E4τ i · τ jσ i · σ j)
[

Z′′
0 (rij;3)+ 2

Z′
0(rij;3)

rij

]

Z0(rik;3)

+(E5 + E6τ i · τ j)Sij

[

Z′′
0 (rij;3)−

Z′
0(rij;3)

rij

]

Z0(rik;3)

+(E7 + E8τ i · τ k)(L · S)ij
Z′
0(rij;3)

rij
Z0(rik;3)

+(E9 + E10τ j · τ k)σ j · r̂ijσ k · r̂ikZ
′
0(rij;3)Z

′
0(rik;3), (61)

where σ i (τ i) are the Pauli spin (isospin) matrices of particle i, rij
is the relative distance between particles i and j, and Sij and (L·S)ij
are, respectively, the tensor and spin-orbit operators. The profile
functions Z0(r;3) are written as

Z0(r;3) =

∫

dk

(2π)3
eik·rF(k2;3), (62)

FIGURE 5 | n−3H differential cross sections calculated with the N3LO-I (dashed blue lines) and the N3LO-I/N2LO (solid red lines) interaction models for three different

incident neutron energies. The experimental data are from reference [92].
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with F(k2;3) a suitable cutoff function which suppresses the
momentum transfers k above a given short-distance cutoff 3. In
Equation (61), the basis of operators has been chosen so that most
terms in the potential can be viewed as an ordinary interaction
of particles ij with a further dependence on the coordinate of
the third particle k. In reference [88], elastic p − d scattering
data at Ec.m. = 2 MeV center-of-mass energy have been used
to fit the Ei LECs, when the subleading three-nucleon interaction
given in Equation (61) is considered in addition to the AV18/UIX
interaction. Also 2and and 4and and the triton binding energy
have been included in the fit.

The results of reference [88] can be summarized as follows.
First of all, we noticed that the operators which play a leading
role in reducing the large χ2/datum of Table 3 are the spin-orbit
and tensor interactions, which depend on the LECs E5 and E7.
We present in Table 4 the results of a fit where only the terms
proportional to E0, E5, and E7 are kept. The LEC E0 is used to
fix the triton binding energy. Then the experimental data for the
doublet and quartet n−d scattering lengths of references [82, 83],
and those of several p−d scattering observables at 2 MeV center-
of-mass energy of reference [86] are used for the determinations
of the LECs. As it is shown in Table 4, the χ2/datum is drastically
reduced to ∼ 2 for the short distance cutoff 3 of Equation (62)
between 200 and 500 MeV. More sophisticated fits, including all
the involved LECs, lead to only slightly better χ2/datum ∼ 1.6.
In Figure 2 we show the corresponding fitted curves compared
to the AV18 and AV18/UIX predictions. It is clear that a very
accurate description can be obtained with only the spin-orbit and
tensor subleading operators. We also note that the values of the
LECs e0, e5, e7, defined in terms of E0,E5,E7 as E0 = e0/(F

4
π3),

Ei = ei(F
4
π3

3), i = 5, 7, Fπ = 92.4 MeV being the pion decay
constant, are of order 1 as expected.

With the interaction fitted using the Ec.m. = 2 MeV data of
reference [86], we can perform a study at lower energies, where
experimental data exist. As a representative example we show in
Figure 3 the results corresponding to Ec.m. = 0.666 MeV, from
which we can observe that the adopted interaction captures quite
nicely the energy dependence of the data. In reference [88], a
fit including all the subleading operators of Equation (61) leads
to predictions in even better agreement with the data. However,
in order to obtain further improvements, a global fit at multiple
energies should be performed.

3.3. p−
3He and n−

3H Scattering
The study of N − d scattering to constrain the three-nucleon
force has the limitation of being mostly restricted to the isospin
T = 1/2 channel. From this perspective, A = 4 systems open
new possibilities, besides being of direct relevance for the role
they play in many reactions of astrophysical and cosmological
interest. The HHmethod has been used in this context to address
first of all the n−3H [32] and p−3He [33, 35] elastic scattering
at low energies. The HH method applied to these systems has
been benchmarked in reference [34] with the only two other
ab initio methods which can study low-energy scattering states,
with full inclusion of the Coulomb interaction. They are the
AGS equations solved in momentum space (see for a review
references [16, 17] and references therein), and the FE method
in configuration space (see reference [13]. This topic is also

covered in the present Research Topic). All these methods differ
by <1%, which is smaller than the experimental uncertainties of
the available data. The agreement found using softer potentials of
the Vlow−k-type is even better.

The n−3H elastic scattering total cross section is shown in
Figure 4. From inspection of the figure, we can see a sizable
dependence on the three-nucleon interaction, both in the very
low-energy region and in the peak region (for neutron laboratory
energy En ∼ 3.5 MeV). Indeed, at very low energies, it is crucial
to have a correct description of the triton binding energy in
order to reproduce the data, whereas in the peak region there is
more model dependence. The HH calculations of Figure 4 have
been performed using the non-local chiral N3LO-I two-nucleon
potential, also supplemented by the chiral N2LO three-nucleon
interaction of reference [66] with the LECs fixed to reproduce the
A = 3, 4 binding energies. This leads to a remarkable agreement
with the available experimental data in the low-energy region.
The chiral N3LO-I model seems to perform better than the AV18
one also in the peak region.

In Figure 5 we show the n−3H differential cross section
compared to the experimental data at three different neutron
laboratory energies. As it is clear from inspection of the figure,
the N3LO-I/N2LO results are in nice agreement with the data.
A further study of convergence with respect to chiral orders
and of cutoff dependence would be highly desirable, and it is
currently underway.

Much more accurate data are available for p−3He elastic
scattering, whose polarization observables have also been
accurately measured [93]. Similarly to the p − d case, there is
a strong discrepancy between theory and experiment for the
proton analyzing power Ay. In reference [35] the HHmethod has
been applied with the N3LO-I/N2LO chiral potential model, in
this case obtained with two different values of the momentum
cutoff 3 = 500, 600 MeV [94], and two different procedures
to fix the LECs entering the three-nucleon interaction, i.e.,
either reproducing the A = 3, 4 binding energies [66], or
reproducing the triton binding energy and Gamow-Teller matrix
element in tritium β-decay [79]. We show in Figure 6 the
corresponding results for proton laboratory energy of 5.54 MeV,
compared to experimental data. The two bands reflect the cutoff
dependence and the model dependence introduced by the LECs
determinations. As it is clear, the Ay discrepancy is largely
reduced down to the 8–10% level. Note that these asymmetries
are 10 times larger in the A = 4 systems than for p − d and
n − d. The remaining discrepancy, although it appears small, is
of the order of 0.05, the size of Ay for p− d. Therefore, we expect
that the subleading components of the three-nucleon interactions
discussed in section 3.2 could give a correction of the necessary
order of magnitude to solve the remaining discrepancy. Work is
in progress in this direction.

3.4. p−
3H and n−

3He Scattering
The treatment of p−3H and n−3He scattering, even below
the d + d threshold, is more challenging due to the coupling
between these two channels and to the presence of both isospin
0 and 1 states. Also in this case, recently, in reference [48],
a benchmark calculation has been performed with the HH,
AGS and FE methods, using the N3LO-I interaction. Good
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FIGURE 6 | p−3He differential cross section, analyzing powers and various spin correlation coefficients at proton laboratory energy Ep = 5.54 MeV, calculated with

only the two-nucleon N3LO-I (light cyan band) or with two- and three-nucleon interaction N3LO-I/N2LO (darker blue band). The experimental data are from

references [95–97]. See text for more details.

agreement among the three methods has been found, with
discrepancies smaller than the uncertainties in the experimental
data. In references [98, 99], we have studied with the HH
method the effect of the inclusion of the N2LO three-nucleon
interaction, with the LECs fixed from the triton binding
energy and the Gamow-Teller matrix element in the tritium
β-decay [79]. We show in Figure 7 the p−3H differential
cross section, for which, only at very low energies, below
the opening of the n−3He channel, some sizable effects are
visible. Otherwise, the three-nucleon interaction contributions
are found very small. The p−3H analyzing power at three
values of the laboratory beam energy are shown in Figure 8.
Also for this observable, the three-nucleon interaction effect is

found too small to improve the agreement with the available
experimental data.

We conclude showing in Figure 9 the HH results for the
differential cross section and proton analyzing power of the
charge-exchange reaction p+3H → n+3He at three different
proton laboratory energies, compared with the experimental
data. By inspection of the figure, we can see that also in this
case the effects of the three-nucleon interaction are quite small,
and sometimes go in the wrong direction as compared to the
experimental data, as for the analyzing power Ay0. It is important
to notice that this observable is mostly sensitive to the two-
nucleon interaction. Therefore, it could be used for a more
stringent test of the two-nucleon force.
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FIGURE 7 | p−3H differential cross section at several values of the proton laboratory beam energy Ep, calculated with the N3LO-I (dashed blue lines) and with the

N3LO-I/N2LO (solid red lines) interactions. The experimental data are from references [100–105].

FIGURE 8 | p−3H proton analyzing power at three values of the proton laboratory beam energy Ep calculated with the N3LO-I (dashed blue lines) and with the

N3LO-I/N2LO (solid red lines) interactions. The experimental data are from reference [105].

4. CONCLUSIONS AND OUTLOOK

In this work we have presented a review of the HH method,
focusing on themost significant achievements after the year 2008,

when the previous review on the HHmethod [19] was published.
We have also included a presentation of the HH formalism with
some detail, in order to make the reader appreciate the main
concepts of the method and to provide him/her the instruments
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FIGURE 9 | p+3H → n+3He differential cross section and proton analyzing power at three values of the proton laboratory beam energy Ep calculated with the N3LO-I

(dashed blue lines) and with the N3LO-I/N2LO (solid red lines) interactions. The experimental data are from references [106–110].

needed to implement the method by him/herself. We have then
focused on the latest results obtained within the HH method.
We can summarize the situation as follows: the HH method can
solve the three- and four-body bound-state problem with great
accuracy and with essentially any (local and non-local) model for
the two-nucleon interaction available in the literature. The three-
nucleon interaction models used so far are however only local.
The A = 3, 4 scattering states have been studied with several
local and non-local potentials below the target nucleus breakup
threshold. Using local potentials, also the elastic channel above
the breakup threshold have been investigated. The HH method
has then a wide range of applications: it has been used not only
to test the models for the two- and three-nucleon interactions,
but also to determine the parameters entering in the subleading
three-nucleon contact interaction, derived in reference [87]. This
has allowed one to construct a model for the three-nucleon
interaction able to solve, at least within the (preliminary) hybrid
framework of reference [88], some long-standing puzzles, as the
Ay-puzzle. Furthermore, the HHmethod has been widely used in
the study of nuclear reactions of astrophysical interest, as well as
the electroweak structure of light nuclei [50, 111, 112].

The HH method has still a lot of potentialities, which will
be explored in the near future. First of all, we will implement
the method to the case of a non-local three-nucleon interaction.
This is widely requested, in order to have consistency in the
two- and three-nucleon cutoff functions which appear in the

models derived within chiral effective field theory, for instance
in references [72, 73]. Once the LECs cD and cE will be
determined using the non-local three-nucleon interaction with
the same procedure outlined in section 3, they will be used
in fully consistent studies of other systems, as nuclear and
neutron matter.

Secondly, we can mention only preliminary applications of
the HH method to describe breakup reactions in A = 3 [40].
Work on the implementation of the HH method to the breakup
channels in A = 3, 4 is currently underway. It does not require
significant modifications of the method, but still it has not been
performed yet. Once done, the three- and four-body nuclear
systems will be completely covered by the method.

As mentioned above, the extension of the method to the A =
5, 6 nuclear systems has been investigated and the first results
obtained using a Vlow−k interaction will appear soon and are
indeed very promising. This is amajor step for theHHmethod, as
it will allow us to tackle a large number of interesting subjects, and
especially a large number of nuclear reactions of astrophysical
interest. From a first investigation, the further extension of the
method to even larger values of A, i.e., A = 7, 8, seems feasible.

Finally, in order to have access to higher mass nuclear systems,
both bound and scattering states, we could take advantage of the
strong clusterization present in some of them, as, for instance,
in 9Be, which can be studied as a α − α − n system. In order
to do so, the HH method must then be extended to the case of
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non-equal mass systems. And this, in turn, will allow to study
also more exotic systems, as hypernuclei, where one nucleon is
replaced with an hyperon. Works along this line have started in
reference [61], and are conducted also by other groups [113, 114].

In conclusion, the HH method has quite a “glorious” history,
and has fulfilled its service in the continuous test of the nuclear
interaction models. However, this service is not yet at an end, and
we expect to see the HH method playing a protagonist role also
in the next years.
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