74 research outputs found

    Magnesium and manganese induced changes on chemical, nutritional, antioxidant and antimicrobial properties of the pansy and Viola edible flowers

    Get PDF
    composition was determined using standard methods. Free sugars, fatty acids, organic acids, tocopherols, and phenolic compounds were analyzed using various HPLC and GC devises. The extract’s antimicrobial, antioxidant, cytotoxicity, and anti-inflammatory activity were assessed. The results indicated that Mg enrichment negatively affected plant growth and mineral accumulation but improved photosynthetic performance. The edible flowers contained significant amounts of protein, low levels of fat, and varying sugar contents, such as glucose and fructose. Various fatty acids and phenolic compounds were identified, with different concentrations depending on the treatment. The flowers exhibited antioxidant potential, antimicrobial activity, cytotoxic effects, and antiinflammatory properties. The correlations between the investigated parameters not only expand knowledge on Mg and Mn interaction but also catalyze significant advancements in sustainable agriculture and food health, fostering a healthier and more conscious future.The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CIMO (UIDB/00690/2020 and UIDP/00690/ 2020) and SusTEC (LA/P/0007/2020). L. Barros, Ricardo C. Calhelha, S. A. Heleno and T. C. Finimundy thank the national funding by FCT through the institutional scientific employment program-contract for her contract, while M. Carocho thanks FCT through the individual scientific employment program-contract (CEECIND/00831/2018). I. Oliveira thanks FCT for her PhD grant (BD/06017/2020).info:eu-repo/semantics/publishedVersio

    Narrativas dos profissionais dos ensinos pré-escolar e primeiro ciclo face às crianças com necessidades educativas especiais: o outro lado da história

    Get PDF
    [Resumo] As debilidades na formação dos educadores e professores quanto as NEE sao uma importante variável influenciadora na e para a construção de urna equidade educativa. Registe-se a afirmação proferida na Declaras;ao de Salamanca: "a preparação adequada de todo o pessoal educativo é o factor chave na promosção das escolas inclusivas." Toma-se imprescindível conhecermos as formas de pensar, de actuar, a diversidade de sentimentos e estratégias que os profissionais poderao demonstrar como resultado de lidarem com uma criança com NEE, para que possamos melhor compreender e interpretar a direcs;ao para a construção de um diálogo efectivo de parceria educacional. Pretende-se, assim, através de urna metodologia qualitativa - análise de narrativas - o desenvolvimento de um programa de forma<;ao que promova desenvolvimento de atitudes positivas face a escola inclusiva, a aquisis;ao de novas competencias de ensino, que permita aos profissionais serem mais responsivos as necessidades educativas das criança

    Comparison between different extraction methods in the recovery of bioactive molecules from Melissa officinalis L. under sustainable cultivation: chemical and bioactive characterization

    Get PDF
    Melissa officinalis L., from the Lamiaceae family, is one of the most important medicinal and aromatic plants with potential in the market. With the passing of time, the use of medicinal plants in the treatment of some illness has gone from the simplest forms of local treatment to the industrial manufacture of phytotherapics. In addition to their medicinal effect, they can also be used in the form of infusions and decoctions and in various food preparations. In this sense, the objective of this work was to compare three different extraction methods: infusion (100% water), maceration (80:20 ethanol: water v:v) and ultrasound-assisted extraction (UAE) under previous optimized extraction conditions (33.0 +- 3.2 min, 371.7 +- 19.3Wand 39.9 +- 1.4% ethanol), in plants grown under sustainable cultivation under full irrigation in June. The parameters studied included bioactive evaluation by antioxidant (thiobarbituric acid reactive substances—TBARS), cytotoxicity (sulforhodamine B) and anti-inflammatory (RAWcells) assays. The composition of phenolic compounds and organic acids was also studied by GC-MS and HPLC-DAD, respectively. According to the obtained results, eight phenolic compounds were identified and quantified, being rosmarinic acid the main one for the three extraction methods (infusion: 107.1 +- 0.9 mg/g extract; maceration: 155.7 +- 0.3 mg/g extract; UAE: 118.7 0.6 mg/g extract). For Lithospermic acid A isomer (25.25 +- 0.01 mg/g) and Hydroxylsalvianolic E (111.70 +- 2.20 mg/g), the UAE revealed the lowest content of individual polyphenols, whereas maceration recorded the highest extractability. On the other hand, the content of six of the eight polyphenols detected for the ultrasound-assisted extraction was similar to the infusion and maceration methods. In terms of antioxidant activity, the infusions showed the highest capacity (3.00 +- 0.14 +-g/mL), followed by maceration (5.33 +- 0.30 +-g/mL) and UAE (12 +- 0.15 +-g/mL). The highest anti-inflammatory activity was verified for the infusion (244 +- 11 +-g/mL), followed by UAE (305 +- 9 +-g/mL), with no activity recorded for the maceration extract (>400 +-g/mL). The antitumor properties were evaluated in five cell lines, with the best results being recorded for infusion, except AGS (24 +- 1 +-g/mL) whereThe authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES to CIMO (UIDB/00690/2020). L. Barros and M.I. Dias thank the national funding by FCT through the institutional scientific employment program-contract for her contract, while M. Carocho and S. Heleno thank FCT through the indiviual scientific employment program-contracts (CEECIND/00831/2018 and CEECIND/03040/2017). I. Oliveira thanks FCT for her PhD grant (BD/06017/2020). To FEDER-Interreg España-Portugal programme for financial support through the project TRANSCoLAB 0612_TRANS_CO_LAB_2_P; to ERDF through the Regional Operational ProgramNorth 2020, within the scope of Project GreenHealth— Norte-01-0145-FEDER-000042.info:eu-repo/semantics/publishedVersio

    Urban agriculture as a keystone contribution towards securing sustainable and healthy development for cities in the future

    Get PDF
    esearch and practice during the last 20 years has shown that urban agriculture can contribute to minimising the effects of climate change by, at the same time, improving quality of life in urban areas. In order to do so most effectively, land use and spatial planning are crucial so as to obtain and maintain a supportive green infrastructure and to secure citizens' healthy living conditions. As people today trend more towards living in green and sustainable city centres that can offer fresh and locally produced food, cities become again places for growing food. The scope of urban agriculture thereby is to establish food production sites within the city's sphere; for example, through building-integrated agriculture including concepts such as aquaponics, indoor agriculture, vertical farming, rooftop production, edible walls, as well as through urban farms, edible landscapes, school gardens and community gardens. Embedded in changing urban food systems, the contribution of urban agriculture to creating sustainable and climate-friendly cities is pivotal as it has the capacity to integrate other resource streams such as water, waste and energy. This article describes some of the current aspects of the circular city debate where urban agriculture is pushing forward the development of material and resource cycling in cities.European Cooperation in Science and Technology (COST): CA17133; EU Horizon 2020 Programmeinfo:eu-repo/semantics/publishedVersio

    Chemical composition and plant growth of Centaurea raphanina subsp. mixta plants cultivated under saline conditions

    Get PDF
    The aim of this report was to study the effect of salinity (control: 2dS/m, S1: 4 dS/m and S2: 6 dS/m) and harvest time (first harvest on 9 May 2018 and second harvest on 19 April 2018) on the growth and the chemical composition of Centaurea raphanina subsp. mixta plants. The plants of the first harvest were used for the plant growth measurements (fresh weight and moisture content of leaves, rosette diameter, number and thickness of leaves), whereas those of the second harvest were not used for these measurements due to the flowering initiation, which made the leaves unmarketable due to their hard texture. The results of our study showed that C. raphanina subsp. mixta plants can be cultivated under mild salinity (S1 treatment) conditions without severe effects on plant growth and yield, since a more severe loss (27.5%) was observed for the S2 treatment. In addition, harvest time proved to be a cost-effective cultivation practice that allows to regulate the quality of the final product, either in edible form (first harvest) or for nutraceutical and pharmaceutical purposes as well as antimicrobial agents in food products. Therefore, the combination of these two agronomic factors showed interesting results in terms of the quality of the final product. In particular, high salinity (S2 treatment) improved the nutritional value by increasing the fat, proteins and carbohydrates contents in the first harvest, as well as the tocopherols and sugars contents (S1 and S2 treatments, respectively) in the second harvest. In addition, salinity and harvest time affected the oxalic acid content which was the lowest for the S2 treatment at the second harvest. Similarly, the richest fatty acid (α-linolenic acid) increased with increasing salinity at the first harvest. Salinity and harvest time also affected the antimicrobial properties, especially against Staphylococcus aureus, Bacillus cereus and Trichoderma viride, where the extracts from the S1 and S2 treatments showed high effectiveness. In contrast, the highest amounts of flavanones (pinocembrin derivatives) were detected in the control treatment (second harvest), which was also reflected to the highest antioxidant activity (TBARS) for the same treatment. In conclusion, C. raphanina subsp. mixta plants seem to be tolerant to medium salinity stress (S1 treatment) since plant growth was not severely impaired, while salinity and harvesting time affected the nutritional value (fat, proteins, and carbohydrates) and the chemical composition (tocopherols, sugars, oxalic acid, fatty acids), as well as the bioactive properties (cytotoxicity and antimicrobial properties) of the final product

    Essential Oil Composition and Bioactive Properties of Lemon Balm Aerial Parts as Affected by Cropping System and Irrigation Regime

    No full text
    The ongoing climate crisis necessitates the sustainable use of natural resources and the adop-tion of environmentally friendly agronomic practices. Deficit irrigation is an ecofriendly technique that allows for the improvement in the water use efficiency of crops. On the other hand, medicinal and aromatic crops, which usually have an innate tolerance to harsh conditions, are suitable candidates for cultivation under low-input cropping systems. In the present study, Melissa officinalis plants were cultivated under conventional and organic cropping systems, while in each system two irrigation regimes (full irrigation or deficit irrigation) were tested. The aerial parts of the plants were evaluated in terms of growth and physiological parameters, chemical composition, antioxidant activity, essential oil yield and essential oil composition. Our results indicate that prolonged water stress after two deficit irrigation cycles had detrimental effects on the plant growth and biomass production, whereas it significantly increased the essential oil yield, regardless of the cropping system (organic or conventional cultivation). The recorded physiological parameters are in agreement with morphological features, especially the stomatal conductance, which was significantly reduced under deficit irrigation for both cultivation systems, revealing that the growth inhibition was the result of stomatal closure and carbon dioxide deprivation. Deficit irrigation and organic cultivation also increased total phenol and total flavonoid content, especially in the second harvest, thus resulting in higher antioxidant activity assayed by the FRAP method. In contrast, DPPH and ABTS methods did not show any differences among the tested treatments in the second harvest, which suggests that other bioactive compounds are also involved in the overall antioxidant mechanism of lemon balm plants, as indicated by the increased ascorbic acid content. Regarding the essential oil composition, the major detected compounds were geranial and neral and, although they were both increased under the organic cropping in the first harvest, the same trend was not observed in the second harvest. Finally, a variable effect of cropping system and irrigation regime on minerals content was recorded. In conclusion, deficit irrigation is an ecofriendly practice that could be applied in conventional and organic cropping systems of lemon balm crops, aiming to reduce irrigation water consumption and compensate for reduced herb yields with increased essential oil yield and polyphenol content. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Effectiveness of Aloe vera gel coating for maintaining tomato fruit quality

    Get PDF
    Application of an edible coating is a technique that can be used to increase fruit storability. Tomato fruit were coated with 0%, 5%, 10%, 15% and 20% Aloe vera gel and fruit quality maintenance was examined up to 14 days at 11 °C and 90% relative humidity. Results showed that 10% and 15% A. vera coating reduced fruit ethylene production. The ripening index (total soluble solids/titratable acidity) decreased after 7 days of storage in 10% Aloe-coated fruits, maintaining the overall quality of the tomato fruit. Lycopene and β-carotene content were reduced with 20% A. vera in both examined storage periods. Ascorbic acid content was increased in 10% Aloe-coated fruits. Total phenolics and antioxidative status were increased in 20% coated fruits after 14 days of storage. Fruit firmness, titratable acidity, weight loss, respiration rate and fruit colour (L*, a*, b*) did not differ among treatments. Thus, an edible coating of 10% A. vera could be considered as a promising treatment to maintain tomato quality during postharvest storage

    Interactive effects of salinity and silicon application on Solanum lycopersicum growth, physiology and shelf-life of fruit produced hydroponically

    No full text
    BACKGROUND: Using water with high salinity for plant fertigation may have detrimental effects on plant development and total yield and on the quality of the crop produced. As a possible means to alleviate the negative effects of salinity, silicon (Si) can be incorporated in the nutrient solution supplied to plants. In the present study, hydroponically grown tomato (Solanum lycopersicum Mill.) plants were subjected to two different salinity levels (0 and 50 mmol L−1 NaCl) with and without the application of Si (0 and 2 mmol L−1 K2SiO3) in order to evaluate its possible positive impact on mitigation of salinity stress-induced symptoms. An additional experiment was implemented with postharvest Si application (sodium silicate) to investigate effects on the shelf-life of tomato fruit. RESULTS: Salinity (50 mmol L−1 NaCl) decreased plant size, total yield and fresh fruit weight while a high percentage of blossom end rot symptoms of tomato fruit was also observed. The application of Si in the nutrient solution counteracted these detrimental effects, generating a higher yield and healthier fruit (lower blossom end rot incidence) compared to the untreated plants (no application of Si). Salinity improved several quality-related traits in tomato fruit, resulting in higher marketability, whereas the addition of Si (pre- and postharvest) maintained fruit firmness following storage thereby increasing the shelf-life of tomato fruit. CONCLUSIONS: These findings indicate that Si application (pre- and postharvest) could provide an effective means of alleviating the unfavorable effects of using low-quality water in plant fertigation on tomato plant development, fruit yield and post-harvest quality, through increased fruit firmness. © 2019 Society of Chemical Industry. © 2019 Society of Chemical Industr

    Profiling of essential oils components and polyphenols for their antioxidant activity of medicinal and aromatic plants grown in different environmental conditions

    No full text
    In the present study, the yield, the chemical composition, and the antioxidant activities of the essential oils (EOs) of eight medicinal and aromatic plants (MAPs) cultivated under two environmental conditions characterized by a different altitude (namely mountainous and plain) were evaluated. Cultivation at different environmental conditions resulted in significant differences in the chemical composition and antioxidant activity for most of the studied species. In particular, high altitudes resulted in increased phenolic compounds’ content and antioxidant activity for artemisia plants, while specific parameters increased in the case of spearmint (total phenols) and rosemary (flavonoids). In contrast, in pelargonium, all the tested parameters were positively affected in the plain area, whereas, for laurel and sage, only flavanols remained unaffected. EO yield in mountainous pelargonium and spearmint decreased while, in mountainous laurel, pelargonium and spearmint increased when compared to plain areas. In addition, the major EO constituents’ content for most of the species were affected by environmental conditions. The 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and ferric reducing antioxidant power (FRAP) were variably correlated with total phenols, flavonoids, and flavanols, depending on the species and the altitude. Lastly, in limited cases, antioxidant activity (DPPH or FRAP values) was positively correlated with some EO components (e.g., borneol and β-pinene in artemisia and laurel plants grown in the plain, respectively, or 1,8-cineole in mountainous grown verbena plants). In conclusion, environmental conditions (altitude) affected antioxidants’ content and EO yield and composition of the studied MAPs. These findings can be used to introduce cultivation of MAPs in specific ecosystems for the production of high added value products. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

    Effectiveness of Aloe vera gel coating for maintaining tomato fruit quality

    No full text
    Application of an edible coating is a technique that can be used to increase fruit storability. Tomato fruit were coated with 0%, 5%, 10%, 15% and 20% Aloe vera gel and fruit quality maintenance was examined up to 14 days at 11 °C and 90% relative humidity. Results showed that 10% and 15% A. vera coating reduced fruit ethylene production. The ripening index (total soluble solids/titratable acidity) decreased after 7 days of storage in 10% Aloe-coated fruits, maintaining the overall quality of the tomato fruit. Lycopene and β-carotene content were reduced with 20% A. vera in both examined storage periods. Ascorbic acid content was increased in 10% Aloe-coated fruits. Total phenolics and antioxidative status were increased in 20% coated fruits after 14 days of storage. Fruit firmness, titratable acidity, weight loss, respiration rate and fruit colour (L*, a*, b*) did not differ among treatments. Thus, an edible coating of 10% A. vera could be considered as a promising treatment to maintain tomato quality during postharvest storage
    corecore