4,450 research outputs found
Compressible streaming instabilities in rotating thermal viscous objects
We study electromagnetic streaming instabilities in thermal viscous regions
of rotating astrophysical objects, such as, protostellar and protoplanetary
magnetized accretion disks, molecular clouds, their cores, and elephant trunks.
The obtained results can also be applied to any regions of interstellar medium,
where different equilibrium velocities between charged species can arise. We
consider a weakly and highly ionized three-component plasma consisting of
neutrals and magnetized electrons and ions. The vertical perturbations along
the background magnetic field are investigated. The effect of perturbation of
collisional frequencies due to density perturbations of species is taken into
account. The growth rates of perturbations are found in a wide region of wave
number spectrum for media, where the thermal pressure is larger than the
magnetic pressure. It is shown that in cases of strong collisional coupling of
neutrals with ions the contribution of the viscosity is negligible.Comment: Accepted for publication in "Astrophysical Journal
First measurements of 15N fractionation in N2H+ toward high-mass star forming cores
We report on the first measurements of the isotopic ratio 14N/15N in N2H+
toward a statistically significant sample of high-mass star forming cores. The
sources belong to the three main evolutionary categories of the high-mass star
formation process: high-mass starless cores, high-mass protostellar objects,
and ultracompact HII regions. Simultaneous measurements of 14N/15N in CN have
been made. The 14N/15N ratios derived from N2H+ show a large spread (from ~180
up to ~1300), while those derived from CN are in between the value measured in
the terrestrial atmosphere (~270) and that of the proto-Solar nebula (~440) for
the large majority of the sources within the errors. However, this different
spread might be due to the fact that the sources detected in the N2H+
isotopologues are more than those detected in the CN ones. The 14N/15N ratio
does not change significantly with the source evolutionary stage, which
indicates that time seems to be irrelevant for the fractionation of nitrogen.
We also find a possible anticorrelation between the 14N/15N (as derived from
N2H+) and the H/D isotopic ratios. This suggests that 15N enrichment could not
be linked to the parameters that cause D enrichment, in agreement with the
prediction by recent chemical models. These models, however, are not able to
reproduce the observed large spread in 14N/15N, pointing out that some
important routes of nitrogen fractionation could be still missing in the
models.Comment: 2 Figures, accepted for publication in ApJ
H_2D^+ in the High-mass Star-forming Region Cygnus X
H_2D^+ is a primary ion that dominates the gas-phase chemistry of cold dense gas. Therefore, it is hailed as a unique tool in probing the earliest, prestellar phase of star formation. Observationally, its abundance and distribution is, however, just beginning to be understood in low-mass prestellar and cluster-forming cores. In high-mass star-forming regions, H_2D^+ has been detected only in two cores, and its spatial distribution remains unknown. Here, we present the first map of the ortho-H_2D^+J_(k^+,k^-) = 1_(1,0) → 1_(1,1) and N_2H^+ 4-3 transition in the DR21 filament of Cygnus X with the James Clerk Maxwell Telescope, and N_2D^+ 3-2 and dust continuum with the Submillimeter Array. We have discovered five very extended (≤34, 000 AU diameter) weak structures in H2D+ in the vicinity of, but distinctly offset from, embedded protostars. More surprisingly, the H_2D^+ peak is not associated with either a dust continuum or N_2D^+ peak. We have therefore uncovered extended massive cold dense gas that was undetected with previous molecular line and dust continuum surveys of the region. This work also shows that our picture of the structure of cores is too simplistic for cluster-forming cores and needs to be refined: neither dust continuum with existing capabilities nor emission in tracers like N_2D^+ can provide a complete census of the total prestellar gas in such regions. Sensitive H_2D^+ mapping of the entire DR21 filament is likely to discover more of such cold quiescent gas reservoirs in an otherwise active high-mass star-forming region
O2 signature in thin and thick O2-H2O ices
Aims. In this paper we investigate the detectability of the molecular oxygen
in icy dust grain mantles towards astronomical objects. Methods. We present a
systematic set of experiments with O2-H2O ice mixtures designed to disentangle
how the molecular ratio affects the O2 signature in the mid- and near-infrared
spectral regions. All the experiments were conducted in a closed-cycle helium
cryostat coupled to a Fourier transform infrared spectrometer. The ice mixtures
comprise varying thicknesses from 8  10 to 3 m. The
absorption spectra of the O2-H2O mixtures are also compared to the one of pure
water. In addition, the possibility to detect the O2 in icy bodies and in the
interstellar medium is discussed. Results. We are able to see the O2 feature at
1551 cm even for the most diluted mixture of H2O : O2 = 9 : 1,
comparable to a ratio of O2/H2O = 10 % which has already been detected in situ
in the coma of the comet 67P/Churyumov-Gerasimenko. We provide an estimate for
the detection of O2 with the future mission of the James Webb Space Telescope
(JWST).Comment: 11 pages, 10 figures, article in press, to appear in A&A 201
On the evolution of the molecular line profiles induced by the propagation of C-shock waves
We present the first results of the expected variations of the molecular line
emission arising from material recently affected by C-shocks (shock
precursors). Our parametric model of the structure of C-shocks has been coupled
with a radiative transfer code to calculate the molecular excitation and line
profiles of shock tracers such as SiO, and of ion and neutral molecules such as
H13CO+ and HN13C, as the shock propagates through the unperturbed medium. Our
results show that the SiO emission arising from the early stage of the magnetic
precursor typically has very narrow line profiles slightly shifted in velocity
with respect to the ambient cloud. This narrow emission is generated in the
region where the bulk of the ion fluid has already slipped to larger velocities
in the precursor as observed toward the young L1448-mm outflow. This strongly
suggests that the detection of narrow SiO emission and of an ion enhancement in
young shocks, is produced by the magnetic precursor of C-shocks. In addition,
our model shows that the different velocity components observed toward this
outflow can be explained by the coexistence of different shocks at different
evolutionary stages, within the same beam of the single-dish observations.Comment: 7 pages, 4 figures, accepted for publication in Ap
First ALMA maps of HCO, an important precursor of complex organic molecules, towards IRAS 16293-2422
The formyl radical HCO has been proposed as the basic precursor of many
complex organic molecules such as methanol (CHOH) or glycolaldehyde
(CHOHCHO). Using ALMA, we have mapped, for the first time at high angular
resolution (1, 140 au), HCO towards the Solar-type
protostellar binary IRAS 162932422, where numerous complex organic molecules
have been previously detected. We also detected several lines of the chemically
related species HCO, CHOH and CHOHCHO. The observations revealed
compact HCO emission arising from the two protostars. The line profiles also
show redshifted absorption produced by foreground material of the circumbinary
envelope that is infalling towards the protostars. Additionally, IRAM 30m
single-dish data revealed a more extended HCO component arising from the common
circumbinary envelope. The comparison between the observed molecular abundances
and our chemical model suggests that whereas the extended HCO from the envelope
can be formed via gas-phase reactions during the cold collapse of the natal
core, the HCO in the hot corinos surrounding the protostars is predominantly
formed by the hydrogenation of CO on the surface of dust grains and subsequent
thermal desorption during the protostellar phase. The derived abundance of HCO
in the dust grains is high enough to produce efficiently more complex species
such as HCO, CHOH, and CHOHCHO by surface chemistry. We found that
the main formation route of CHOHCHO is the reaction between HCO and
CHOH.Comment: Accepted in Monthly Notices of the Royal Astronomical Society; 19
  pages, 12 figures, 7 table
Chemical evolution in the environment of intermediate mass young stellar objects: NGC7129--FIRS2 and LkH234
We have carried out a molecular survey of the Class 0 IM protostar NGC 7129
-- FIRS 2 (hereafter FIRS 2) and the Herbig Be star LkH 234 with the
aim of studying the chemical evolution of the envelopes of intermediate-mass
(IM) young stellar objects (YSOs). Both objects have similar luminosities (~500
Lsun) and are located in the same molecular cloud which minimizes the chemical
differences due to different stellar masses or initial cloud conditions.
Moreover, since they are located at the same distance, we have the same spatial
resolution in both objects. A total of 17 molecular species (including rarer
isotopes) have been observed in both objects and the structure of their
envelopes and outflows is determined with unprecedent detail.
  Our results show that the protostellar envelopes are dispersed and warmed up
during the evolution to become a pre-main sequence star. In fact, the envelope
mass decreases by a factor >5 from FIRS 2 to LkH234, while the kinetic
temperature increases from ~13K to 28K. On the other hand, there is no
molecular outflow associated with LkH234. The molecular outflow seems
to stop before the star becomes visible. These physical changes strongly affect
the chemistry of their envelopes.
  Based on our results in FIRS2 and LkH 234, we propose some abundance
ratios that can be used as chemical clocks for the envelopes of IM YSOs. The
SiO/CS, CN/N2H+, HCN/N2H+, DCO+/HCO+ and D2CO/DCO+ ratios are good diagnostics
of the protostellar evolutionary stage.Comment: 24 pages, 17 figure
The chemical structure of the very young starless core L1521E
L1521E is a dense starless core in Taurus that was found to have relatively
low molecular depletion by earlier studies, thus suggesting a recent formation.
We aim to characterize the chemical structure of L1521E and compare it to the
more evolved L1544 pre-stellar core. We have obtained 2.52.5
arcminute maps toward L1521E using the IRAM-30m telescope in transitions of
various species. We derived abundances for the species and compared them to
those obtained toward L1544. We estimated CO depletion factors. Similarly to
L1544, -CH and CHOH peak at different positions. Most species
peak toward the -CH peak. The CO depletion factor derived toward the
 dust peak is 4.31.6, which is about a factor of three lower
than that toward L1544. The abundances of sulfur-bearing molecules are higher
toward L1521E than toward L1544 by factors of 2-20. The abundance of
methanol is similar toward the two cores. The higher abundances of
sulfur-bearing species toward L1521E than toward L1544 suggest that significant
sulfur depletion takes place during the dynamical evolution of dense cores,
from the starless to pre-stellar stage. The CO depletion factor measured toward
L1521E suggests that CO is more depleted than previously found. Similar
CHOH abundances between L1521E and L1544 hint that methanol is forming at
specific physical conditions in Taurus, characterized by densities of a few
10 cm and (H)10 cm, when CO
starts to catastrophically freeze-out, while water can still be significantly
photodissociated, so that the surfaces of dust grains become rich in solid CO
and CHOH, as already found toward L1544. Methanol can thus provide
selective crucial information about the transition region between dense cores
and the surrounding parent cloud.Comment: Accepted for publication in A&A, abstract abridge
Fluvial and eolian ichnofaunas from the Lower Permian of South America (Patquía Formation, Paganzo Basin)
The Lower Permian Patquía Formation is the youngest unit of the Paganzo Basin, western Argentina. The lower section consists of red mudstones, and fine- and coarse-grained sandstones deposited in fluvial systems with extensive and thick floodplain deposits. These rocks contain a low-diversity and relatively abundant association of trace fossils suggesting the activity of a sub-superficial to superficial fauna. The association is characterized by Rusophycus carbonarius (Cubichnia), Cruziana problematica (Repichnia), and Palaeophycus tubularis (Domichnia) of the Scoyenia ichnofacies. Disarticulated fish remains are also present. The upper section is dominated by red, cross-bedded, medium- to fine-grained sandstones deposited in eolian systems that host a lowdiversity and low-abundance association of trace fossils that indicates the activity of a mainly superficial fauna. Tetrapod footprints (Chelichnus duncani, oval digit imprints, short parallel grooves, and sinusoidal grooves), horizontal to vertical burrows (Palaeophycus tubularis and Skolithos isp. respectively), and arthropod trackways are the typical components of these deposits. The association shows elements of the three presently proposed eolian ichnofacies (Chelichnus, Octopodichnus and Entradichnus ichnofacies) suggesting the necessity of revision and the possible integration of these separate ichnofacies into a single model. The record of fossil vertebrate tracks is uncommon in Lower Permian strata of South America. Therefore, the ichnologic record of the Patquía Formation is a significant contribution to the understanding of Lower Permian South American ichnofaunas
- …
