42 research outputs found

    Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO2, but strongly affected by drought

    Get PDF
    Nitrification is a fundamental process in terrestrial nitrogen cycling. However, detailed information on how climate change affects the structure of nitrifier communities is lacking, specifically from experiments in which multiple climate change factors are manipulated simultaneously. Consequently, our ability to predict how soil nitrogen (N) cycling will change in a future climate is limited. We conducted a field experiment in a managed grassland and simultaneously tested the effects of elevated atmospheric CO2, temperature, and drought on the abundance of active ammonia-oxidizing bacteria (AOB) and archaea (AOA), comammox (CMX) Nitrospira, and nitrite-oxidizing bacteria (NOB), and on gross mineralization and nitrification rates. We found that N transformation processes, as well as gene and transcript abundances, and nitrifier community composition were remarkably resistant to individual and interactive effects of elevated CO2 and temperature. During drought however, process rates were increased or at least maintained. At the same time, the abundance of active AOB increased probably due to higher NH4+ availability. Both, AOA and comammox Nitrospira decreased in response to drought and the active community composition of AOA and NOB was also significantly affected. In summary, our findings suggest that warming and elevated CO2 have only minor effects on nitrifier communities and soil biogeochemical variables in managed grasslands, whereas drought favors AOB and increases nitrification rates. This highlights the overriding importance of drought as a global change driver impacting on soil microbial community structure and its consequences for N cycling

    Plant-microbial linkages underpin carbon sequestration in contrasting mountain tundra vegetation types

    Get PDF
    Tundra ecosystems hold large stocks of soil organic matter (SOM), likely due to low temperatures limiting rates of microbial SOM decomposition more than those of SOM accumulation from plant primary productivity and microbial necromass inputs. Here we test the hypotheses that distinct tundra vegetation types and their carbon supply to characteristic rhizosphere microbes determine SOM cycling independent of temperature. In the subarctic Scandes, we used a three-way factorial design with paired heath and meadow vegetation at each of two elevations, and with each combination of vegetation type and elevation subjected during one growing season to either ambient light (i.e., ambient plant productivity), or 95% shading (i.e., reduced plant productivity). We assessed potential above-and belowground ecosystem linkages by uni-and multivariate analyses of variance, and structural equation modelling. We observed direct coupling between tundra vegetation type and microbial community composition and function, which underpinned the ecosystem's potential for SOM storage. Greater primary productivity at low elevation and ambient light supported higher microbial biomass and nitrogen immobilisation, with lower microbial mass-specific enzymatic activity and SOM humification. Congruently, larger SOM at lower elevation and in heath sustained fungal-dominated microbial communities, which were less substrate-limited, and invested less into enzymatic SOM mineralisation, owing to a greater carbon-use efficiency (CUE). Our results highlight the importance of tundra plant community characteristics (i.e., productivity and vegetation type), via their effects on soil microbial community size, structure and physiology, as essential drivers of SOM turnover. The here documented concerted patterns in above-and belowground ecosystem functioning is strongly supportive of using plant community characteristics as surrogates for assessing tundra carbon storage potential and its evolution under climate and vegetation changes

    Microbial growth under drought is confined to distinct taxa and modified by potential future climate conditions

    Get PDF
    Climate change increases the frequency and intensity of drought events, affecting soil functions including carbon sequestration and nutrient cycling, which are driven by growing microorganisms. Yet we know little about microbial responses to drought due to methodological limitations. Here, we estimate microbial growth rates in montane grassland soils exposed to ambient conditions, drought, and potential future climate conditions (i.e., soils exposed to 6 years of elevated temperatures and elevated CO2 levels). For this purpose, we combined 18O-water vapor equilibration with quantitative stable isotope probing (termed 'vapor-qSIP') to measure taxon-specific microbial growth in dry soils. In our experiments, drought caused >90% of bacterial and archaeal taxa to stop dividing and reduced the growth rates of persisting ones. Under drought, growing taxa accounted for only 4% of the total community as compared to 35% in the controls. Drought-tolerant communities were dominated by specialized members of the Actinobacteriota, particularly the genus Streptomyces. Six years of pre-exposure to future climate conditions (3 °C warming and + 300 ppm atmospheric CO2) alleviated drought effects on microbial growth, through more drought-tolerant taxa across major phyla, accounting for 9% of the total community. Our results provide insights into the response of active microbes to drought today and in a future climate, and highlight the importance of studying drought in combination with future climate conditions to capture interactive effects and improve predictions of future soil-climate feedbacks

    Crying out for help with root exudates : adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes

    Get PDF
    Plants employ immunological and ecological strategies to resist biotic stress. Recent evidence suggests that plants adapt to biotic stress by changing their root exudation chemistry to assemble health-promoting microbiomes. This so-called ‘cry-for-help’ hypothesis provides a mechanistic explanation for previously characterized soil feedback responses to plant disease, such as the development of disease-suppressing soils upon successive cultivations of take all-infected wheat. Here, we divide the hypothesis into individual stages and evaluate the evidence for each component. We review how plant immune responses modify root exudation chemistry, as well as what impact this has on microbial activities, and the subsequent plant responses to these activities. Finally, we review the ecological relevance of the interaction, along with its translational potential for future crop protection strategies

    Stoichiometric N:P flexibility and mycorrhizal symbiosis favour plant resistance against drought

    No full text
    1. Drought induces changes in the nitrogen (N) and phosphorus (P) cycle but most plant species have limited flexibility to take up nutrients under such variable or unbalanced N and P availability. Both the degree of flexibility in plant N:P ratio and of root symbiosis with arbuscular mycorrhizal fungi might control plant resistance to drought-induced changes in nutrient availability, but this has not been directly tested. 2. Here, we examined the role of plant N:P stoichiometric status and mycorrhizal symbiosis in the drought-resistance of dominant and subordinate species in a semi-natural grassland. 3. We reduced water availability using rainout shelters (control vs. drought) and measured how plant biomass responded for the dominant and subordinate species. We then selected a dominant (Paspalum dilatatum) and a subordinate species (Cynodon dactylon), for which we investigated the N:P stoichiometric status, mycorrhizal root colonization and water-use efficiency. 4. The biomass of all dominant plant species, but not subordinate species, decreased under drought. Drought increased soil available nitrogen, and thus increased soil N:P ratio, due to decreasing plant N uptake. The dominant P. dilatatum showed a high degree of plant N:P homeostasis and a considerable reduction in biomass under drought. At the opposite, the more flexible subordinate species C. dactylon increased its N uptake and water-use efficiency, apparently due to stronger symbiosis with mycorrhizae, and maintained its biomass. 5. Synthesis. We conclude that the maintenance of N:P homeostasis in dominant species, possibly because of a large root nutrient foraging capacity, becomes inefficient when water stress limits N mobility in the soil. By contrast, we demonstrate that higher stoichiometric N:P flexibility coupled with stronger mutualistic association with mycorrhizae allow subordinate species to better withstand drought perturbations. Using a stoichiometric approach in a field experiment, our study provides for the first time clear and novel understandings of the mechanisms involved in drought-resistance within the plant-mycorrhizae-soil system

    Data from: Stoichiometric N:P flexibility and mycorrhizal symbiosis favor plant resistance against drought

    No full text
    1. Drought induces changes in the nitrogen (N) and phosphorus (P) cycle but most plant species have limited flexibility to take up nutrients under such variable or unbalanced N and P availability. Both the degree of flexibility in plant N:P ratio and of root symbiosis with arbuscular mycorrhizal (AM) fungi might control plant resistance to drought-induced changes in nutrient availability, but this has not been directly tested. 2. Here, we examined the role of plant N:P stoichiometric status and mycorrhizal symbiosis in the drought-resistance of dominant and subordinate species in a semi-natural grassland. 3. We reduced water availability using rainout shelters (control vs drought) and measured how plant biomass responded for the dominant and subordinate species. We then selected a dominant (Paspalum dilatatum) and a subordinate species (Cynodon dactylon), for which we investigated the N:P stoichiometric status, mycorrhizal root colonization and water-use efficiency. 4. The biomass of all dominant plant species, but not subordinate species, decreased under drought. Drought increased soil available nitrogen, and thus increased soil N:P ratio, due to decreasing plant N uptake. The dominant Paspalum dilatatum showed a high degree of plant N:P homeostasis and a considerable reduction in biomass under drought. At the opposite, the more flexible subordinate species Cynodon dactylon increased its N uptake and water-use efficiency, apparently due to stronger symbiosis with mycorrhizae, and maintained its biomass. 5. Synthesis. We conclude that the maintenance of N:P homeostasis in dominant species, possibly because of a large root nutrient foraging capacity, becomes inefficient when water stress limits N mobility in the soil. By contrast, we demonstrate that higher stoichiometric N:P flexibility coupled with stronger mutualistic association with mycorrhizae allow subordinate species to better withstand drought perturbations. Using a stoichiometric approach in a field experiment, our study provides for the first time clear and novel understandings of the mechanisms involved in drought-resistance within the plant-mycorrhizae-soil system

    Full_Results_Mariotte

    No full text
    Full data used in the manuscript. Plant C, N and P. Soil N and P. Soil moisture. Mycorrhizal root colonisation. Plant biomass

    Soil microbial community resistance to drought and links to C stabilization in an Australian grassland

    Get PDF
    Drought is predicted to increase in many areas of the world, which can greatly influence soil microbial community structure and C stabilization. Increasing soil carbon (C) stabilization is an important strategy to mitigate climate change effects, but the underlying processes promoting C stabilization are still unclear. Microbes are an important contributor of C stabilization through the adsorption of microbial derived compounds on organo-mineral complexes. Management practices, such as addition of organic amendments might increase soil C stock and mitigate drought impacts, especially in agro-ecosystems where large losses of C have been reported. Here, we conducted a drought experiment where we tested whether the addition of organic amendments mitigates drought effects on soil C stabilization and its links to microbial community changes. In a semi-natural grassland system of eastern Australia, we combined a management treatment (compost vs. inorganic fertilizer addition) and a drought treatment using rainout shelters (half vs. ambient precipitation). We measured soil moisture, soil nitrogen and phosphorus, particulate organic C (Porn-C) and organo-mineral C (Min-C). Microbial community composition and biomass were assessed with PLFA analyses. A structural equation modeling (SEM) approach was used to examine the controls of soil moisture, Porn-C and nutrients on soil microbial biomass and community structure and changes in Min-C. Overall, the drought treatment did not affect microbial community structure and Min-C, while fertilizer only marginally increased Min-C, highlighting the resistance to these treatments in this grassland soil. In the surface soil (0-5 cm) Min-C was strongly associated with fungi that may have been stimulated by root exudates, and by gram-negative bacteria in the deep soil (5-15 cm) that were more affected by Porn-C and soil moisture. We conclude that the grassland microbial community and its effect on Min-C at our field-site were non-responsive to our drought treatment, but sensitive to variability in soil moisture and microbial community structure. Our findings also show that surface compost application can moderately increase soil C stabilization under drought, representing a useful tool for improving soil C stability. (C) 2016 Elsevier Ltd. All rights reserved
    corecore