57 research outputs found

    Mn∕Ca intra- and inter-test variability in the benthic foraminifer <i>Ammonia tepida</i>

    Get PDF
    The adaptation of some benthic foraminiferal species to low-oxygen conditions provides the prospect of using the chemical composition of their tests as proxies for bottom water oxygenation. Manganese may be particularly suitable as such a geochemical proxy because this redox element is soluble in reduced form (Mn2+) and hence can be incorporated into benthic foraminiferal tests under low-oxygen conditions. Therefore, intra- and inter-test differences in foraminiferal Mn∕Ca ratios may hold important information about short-term variability in pore water Mn2+ concentrations and sediment redox conditions. Here, we studied Mn∕Ca intra- and inter-test variability in living individuals of the shallow infaunal foraminifer Ammonia tepida sampled in Lake Grevelingen (the Netherlands) in three different months of 2012. The deeper parts of this lake are characterized by seasonal hypoxia/anoxia with associated shifts in microbial activity and sediment geochemistry, leading to seasonal Mn2+ accumulation in the pore water. Earlier laboratory experiments with similar seawater Mn2+ concentrations as encountered in the pore waters of Lake Grevelingen suggest that intra-test variability due to ontogenetic trends (i.e. size-related effects) and/or other vital effects occurring during calcification in A. tepida (11–25 % relative SD, RSD) is responsible for part of the observed variability in Mn∕Ca. Our present results show that the seasonally highly dynamic environmental conditions in the study area lead to a strongly increased Mn∕Ca intra- and inter-test variability (average of 45 % RSD). Within single specimens, both increasing and decreasing trends in Mn∕Ca ratios with size are observed. Our results suggest that the variability in successive single-chamber Mn∕Ca ratios reflects the temporal variability in pore water Mn2+. Additionally, active or passive migration of the foraminifera in the surface sediment may explain part of the observed Mn∕Ca variability

    Nickel and helium evidence for melt above the core–mantle boundary

    Get PDF
    High ^(3)He/^(4)He ratios in some basalts have generally been interpreted as originating in an incompletely degassed lower-mantle source. This helium source may have been isolated at the core–mantle boundary region since Earth’s accretion. Alternatively, it may have taken part in whole-mantle convection and crust production over the age of the Earth; if so, it is now either a primitive refugium at the core–mantle boundary or is distributed throughout the lower mantle. Here we constrain the problem using lavas from Baffin Island, West Greenland, the Ontong Java Plateau, Isla Gorgona and Fernandina (Galapagos). Olivine phenocryst compositions show that these lavas originated from a peridotite source that was about 20 per cent higher in nickel content than in the modern mid-ocean-ridge basalt source. Where data are available, these lavas also have high ^(3)He/^(4)He. We propose that a less-degassed nickel-rich source formed by core–mantle interaction during the crystallization of a melt-rich layer or basal magma ocean, and that this source continues to be sampled by mantle plumes. The spatial distribution of this source may be constrained by nickel partitioning experiments at the pressures of the core–mantle boundary

    On the iron isotope composition of Mars and volatile depletion in the terrestrial planets

    Get PDF
    Iron is the most abundant multivalent element in planetary reservoirs, meaning its isotope composition (expressed as ÎŽ57Fe) may record signatures of processes that occurred during the formation and subsequent differentiation of the terrestrial planets. Chondritic meteorites, putative constituents of the planets and remnants of undifferentiated inner solar system bodies, have ÎŽ57Fe ≈ 0‰; an isotopic signature shared with the Martian Shergottite–Nakhlite–Chassignite (SNC) suite of meteorites. The silicate Earth and Moon, as represented by basaltic rocks, are distinctly heavier, ÎŽ57Fe≈+0.1‰. However, some authors have recently argued, on the basis of iron isotope measurements of abyssal peridotites, that the composition of the Earth’s mantle is ÎŽ57Fe = +0.04 ± 0.04‰, indistinguishable from the mean Martian value. To provide a more robust estimate for Mars, we present new high-precision iron isotope data on 17 SNC meteorites and 5 mineral separates. We find that the iron isotope compositions of Martian meteorites reflect igneous processes, with nakhlites and evolved shergottites displaying heavier ÎŽ57Fe(+0.05 ± 0.03‰), whereas MgO-rich rocks are lighter (ÎŽ57Fe≈−0.01 ±0.02‰). These systematics are controlled by the fractionation of olivine and pyroxene, attested to by the lighter isotope composition of pyroxene compared to whole rock nakhlites. Extrapolation of the ÎŽ57Fe SNC liquid line of descent to a putative Martian mantle yields a ÎŽ57Fe value lighter than its terrestrial counterpart, but indistinguishable from chondrites. Iron isotopes in planetary basalts of the inner solar system correlate positively with Fe/Mn and silicon isotopes. While Mars and IV-Vesta are undepleted in iron and accordingly have chondritic ÎŽ57Fe, the Earth experienced volatile depletion at low (1300 K) temperatures, likely at an early stage in the solar nebula, whereas additional post-nebular Fe loss is possible for the Moon and angrites

    Mantle Pb paradoxes : the sulfide solution

    Get PDF
    Author Posting. © Springer, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Contributions to Mineralogy and Petrology 152 (2006): 295-308, doi:10.1007/s00410-006-0108-1.There is growing evidence that the budget of Pb in mantle peridotites is largely contained in sulfide, and that Pb partitions strongly into sulfide relative to silicate melt. In addition, there is evidence to suggest that diffusion rates of Pb in sulfide (solid or melt) are very fast. Given the possibility that sulfide melt ‘wets’ sub-solidus mantle silicates, and has very low viscosity, the implications for Pb behavior during mantle melting are profound. There is only sparse experimental data relating to Pb partitioning between sulfide and silicate, and no data on Pb diffusion rates in sulfides. A full understanding of Pb behavior in sulfide may hold the key to several long-standing and important Pb paradoxes and enigmas. The classical Pb isotope paradox arises from the fact that all known mantle reservoirs lie to the right of the Geochron, with no consensus as to the identity of the “balancing” reservoir. We propose that long-term segregation of sulfide (containing Pb) to the core may resolve this paradox. Another Pb paradox arises from the fact that the Ce/Pb ratio of both OIB and MORB is greater than bulk earth, and constant at a value of 25. The constancy of this “canonical ratio” implies similar partition coefficients for Ce and Pb during magmatic processes (Hofmann et al. 1986), whereas most experimental studies show that Pb is more incompatible in silicates than Ce. Retention of Pb in residual mantle sulfide during melting has the potential to bring the bulk partitioning of Ce into equality with Pb if the sulfide melt/silicate melt partition coefficient for Pb has a value of ~ 14. Modeling shows that the Ce/Pb (or Nd/Pb) of such melts will still accurately reflect that of the source, thus enforcing the paradox that OIB and MORB mantles have markedly higher Ce/Pb (and Nd/Pb) than the bulk silicate earth. This implies large deficiencies of Pb in the mantle sources for these basalts. Sulfide may play other important roles during magmagenesis: 1). advective/diffusive sulfide networks may form potent metasomatic agents (in both introducing and obliterating Pb isotopic heterogeneities in the mantle); 2). silicate melt networks may easily exchange Pb with ambient mantle sulfides (by diffusion or assimilation), thus ‘sampling’ Pb in isotopically heterogeneous mantle domains differently from the silicate-controlled isotope tracer systems (Sr, Nd, Hf), with an apparent ‘de-coupling’ of these systems.Our intemperance should not be blamed on the support we gratefully acknowledge from NSF: EAR- 0125917 to SRH and OCE-0118198 to GAG

    The Fe 3+ /Fe tot ratios of MORB glasses and their implications for mantle melting

    No full text
    International audienc

    Numerical modelling of subduction parameters' influence on partial melting

    No full text
    + PosterInternational audienc
    • 

    corecore