2,310 research outputs found
Double radiative decay in the Standard Model
Z-boson decay in the Standard Model is
analysed. The distribution function on the invariant masses of the photon and
fermion pairs is calculated in the leading logarithmic approximation. It is
shown that this distribution function has a specific shape of a ``crest''. (To
be published in Mod.Phys.Lett.A)Comment: 6 pages, LaTeX, (the figures are not included), Yaroslavl, Yaroslavl
State University preprint YARU-HE-94/0
Infrared-ultraviolet spectra of active galactic nuclei
Data from IRAS and IUE were combined with ground based optical and infrared spectrophotometry to derive emission line free spectral energy distributions (SEDs) for 29 active galactic nuclei (AGNs) between 0.1 and 100 microns. The IRAS data were scaled down to account for extended emission. These correction factors, determined by comparing small aperture ground based 10.6 micron data with large aperture IRAS 12 micron fluxes, were usually less than 25%. These corrected SEDs are shown
Secure Satellite Communication Systems Design with Individual Secrecy Rate Constraints
In this paper, we study multibeam satellite secure communication through
physical (PHY) layer security techniques, i.e., joint power control and
beamforming. By first assuming that the Channel State Information (CSI) is
available and the beamforming weights are fixed, a novel secure satellite
system design is investigated to minimize the transmit power with individual
secrecy rate constraints. An iterative algorithm is proposed to obtain an
optimized power allocation strategy. Moreover, sub-optimal beamforming weights
are obtained by completely eliminating the co-channel interference and nulling
the eavesdroppers' signal simultaneously. In order to obtain jointly optimized
power allocation and beamforming strategy in some practical cases, e.g., with
certain estimation errors of the CSI, we further evaluate the impact of the
eavesdropper's CSI on the secure multibeam satellite system design. The
convergence of the iterative algorithm is proven under justifiable assumptions.
The performance is evaluated by taking into account the impact of the number of
antenna elements, number of beams, individual secrecy rate requirement, and
CSI. The proposed novel secure multibeam satellite system design can achieve
optimized power allocation to ensure the minimum individual secrecy rate
requirement. The results show that the joint beamforming scheme is more
favorable than fixed beamforming scheme, especially in the cases of a larger
number of satellite antenna elements and higher secrecy rate requirement.
Finally, we compare the results under the current satellite air-interface in
DVB-S2 and the results under Gaussian inputs.Comment: 34 pages, 10 figures, 1 table, submitted to "Transactions on
Information Forensics and Security
The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean
27 páginas, 11 tablas, 9 figuras.-- Are Olsen ... et al.-- This work is distributed
under the Creative Commons Attribution 3.0 License.-- Proyecto CarbochangeVersion 2 of the Global Ocean Data Analysis Project (GLODAPv2) data product is composed of data from 724 scientific cruises covering the global ocean. It includes data assembled during the previous efforts GLODAPv1.1 (Global Ocean Data Analysis Project version 1.1) in 2004, CARINA (CARbon IN the Atlantic) in 2009/2010, and PACIFICA (PACIFic ocean Interior CArbon) in 2013, as well as data from an additional 168 cruises. Data for 12 core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have been subjected to extensive quality control, including systematic evaluation of bias. The data are available in two formats: (i) as submitted but updated to WOCE exchange format and (ii) as a merged and internally consistent data product. In the latter, adjustments have been applied to remove significant biases, respecting occurrences of any known or likely time trends or variations. Adjustments applied by previous efforts were re-evaluated. Hence, GLODAPv2 is not a simple merging of previous products with some new data added but a unique, internally consistent data product. This compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 6 µmol kg−1 in total alkalinity, 0.005 in pH, and 5 % for the halogenated transient tracersThe GLODAPv2 project itself received support from a number
of agencies and projects. Importantly, the EU-IP CARBOCHANGE
(FP7 264878) provided funding for A. Olsen, M. Hoppema, S. van
Heuven, and T. Tanhua as well as travel support for R. Key and
the project framework that instigated GLODAPv2. A. Olsen further
acknowledges generous support from the FRAM – High North Research
Centre for Climate and the Environment, the Centre for Climate
Dynamics at the Bjerknes Centre for Climate Research, the EU
AtlantOS (grant agreement no. 633211) project, and the Norwegian
Research Council project SNACS (229752). R. Key was supported
by KeyCrafts grant 2012-001, CICS grants NA08OAR4320752
and NA14OAR4320106, NASA grant NNX12AQ22G, NSF grants
OCE-0825163 (with a supplement via WHOI P.O. C119245) and
PLR-1425989, and Battelle contract #4000133565 to CDIAC.
A. Kozyr was supported by DOE contract DE-AC05-00OR2272 to
UT-Battelle, operators of CDIAC under ORNL. S. K. Lauvset and
E. Jeansson appreciate support from the Norwegian Research Council
(projects DECApH, 214513 and VENTILATE, 229791). The International
Ocean Carbon Coordination Project (IOCCP) also supported
this activity through the U.S. National Science Foundation
grant (OCE- 1243377) to the Scientific Committee on Oceanic Research.
A. Velo and F. F. Pérez acknowledge the support provided
by BOCATS project (CTM2013-41048-P) co-funded by the Spanish
Government and the Fondo Europeo de Desarrollo Regional
(FEDER), and the AtlantOS project (grant agreement no. 633211)
funded by EU H2020 research and innovation programme.Peer reviewe
Relaying energy allocation in training-based amplify and forward relay communications
We consider relay-assisted communication in a training-based transmission scheme. Each transmission block consists of a training phase and a data transmission phase. The relay node employs the amplify-and-forward protocol during all transmissions. We focus on the relay signaling design and investigate the benefit of allowing for different relaying power during the training phase and the data transmission phase. Specifically, the relaying energy allocation between the two phases is optimized for maximizing the average received signal-to-noise ratio at the destination node. We study this optimization problem for both single-antenna relay and multi-antenna relay and derive a simple closed-form relaying energy allocation strategy that achieves near-optimal performance. This closed-form strategy depends only on the length of the data transmission phase but not on other system parameters such as the relaying energy budget, the number of antennas at the relay, and the distances between the source, relay and destination nodes.This work was supported by the Australian Research Council's Discovery Projects funding scheme (project no. DP0984950, DP110102548) and the Research Council of Norway through the project 197565/V30. The work has been carried out while T. Lamahewa was at the Australian National University
Nonrenormalization of Flux Superpotentials in String Theory
Recent progress in understanding modulus stabilization in string theory
relies on the existence of a non-renormalization theorem for the 4D
compactifications of Type IIB supergravity which preserve N=1 supersymmetry. We
provide a simple proof of this non-renormalization theorem for a broad class of
Type IIB vacua using the known symmetries of these compactifications, thereby
putting them on a similar footing as the better-known non-renormalization
theorems of heterotic vacua without fluxes. The explicit dependence of the
tree-level flux superpotential on the dilaton field makes the proof more subtle
than in the absence of fluxes.Comment: 16 pages, no figures. Final version, to appear in JHEP. Arguments for
validity of R-symmetry made more explicit. Minor extra comments and
references adde
Equilibrium configurations of two charged masses in General Relativity
An asymptotically flat static solution of Einstein-Maxwell equations which
describes the field of two non-extreme Reissner - Nordstr\"om sources in
equilibrium is presented. It is expressed in terms of physical parameters of
the sources (their masses, charges and separating distance). Very simple
analytical forms were found for the solution as well as for the equilibrium
condition which guarantees the absence of any struts on the symmetry axis. This
condition shows that the equilibrium is not possible for two black holes or for
two naked singularities. However, in the case when one of the sources is a
black hole and another one is a naked singularity, the equilibrium is possible
at some distance separating the sources. It is interesting that for
appropriately chosen parameters even a Schwarzschild black hole together with a
naked singularity can be "suspended" freely in the superposition of their
fields.Comment: 4 pages; accepted for publication in Phys. Rev.
Data-based estimates of the ocean carbon sink variability – First results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM)
Using measurements of the surface-ocean CO2 partial pressure (pCO2) and 14 different pCO2 mapping methods recently collated by the Surface Ocean pCO2 Mapping intercomparison (SOCOM) initiative, variations in regional and global sea–air CO2 fluxes are investigated. Though the available mapping methods use widely different approaches, we find relatively consistent estimates of regional pCO2 seasonality, in line with previous estimates. In terms of interannual variability (IAV), all mapping methods estimate the largest variations to occur in the eastern equatorial Pacific. Despite considerable spread in the detailed variations, mapping methods that fit the data more closely also tend to agree more closely with each other in regional averages. Encouragingly, this includes mapping methods belonging to complementary types – taking variability either directly from the pCO2 data or indirectly from driver data via regression. From a weighted ensemble average, we find an IAV amplitude of the global sea–air CO2 flux of 0.31 PgC yr−1 (standard deviation over 1992–2009), which is larger than simulated by biogeochemical process models. From a decadal perspective, the global ocean CO2 uptake is estimated to have gradually increased since about 2000, with little decadal change prior to that. The weighted mean net global ocean CO2 sink estimated by the SOCOM ensemble is −1.75 PgC yr−1 (1992–2009), consistent within uncertainties with estimates from ocean-interior carbon data or atmospheric oxygen trend
- …
