60 research outputs found

    Everolimus safety and efficacy for renal angiomyolipomas associated with tuberous sclerosis complex: A Spanish expanded access trial

    Get PDF
    Background: Renal angiomyolipomas (AML) are usual manifestations of tuberous sclerosis complex (TSC) that may cause aneurism-related haemorrhages and renal impairment. Everolimus has emerged as an alternative to surgery/embolization. We provide further insight into everolimus safety and efficacy for TSC-related AML. Methods: This was a Spanish expanded access trial including patients aged ≥18 years with TSC-related AML. They received 10 mg everolimus once daily until AML progression, unacceptable toxicity, death/withdrawal, commercialisation for TSC-related AML, or 1 year after first patient enrolment. The primary outcome was dose-limiting safety according to grade 3/4 adverse events, serious adverse events, or adverse events leading to treatment modification. Secondary outcomes included overall safety and efficacy. Results: Nineteen patients were enrolled and received everolimus for a median of 6.6 (5.3-10.9) months. Eleven (57.9 %) remained on 10 mg/day throughout the study and eight (42.1 %) required treatment modifications due to adverse events; none permanently discontinued treatment. Adverse events were overall grade 1/2 and most frequently included aphthous stomatitis/mucosal inflammation, hypercholesterolaemia/hypertriglyceridaemia, urinary tract infection, hypertension, dermatitis acneiform, and insomnia. Four (21.1 %) patients experienced grade 3 adverse events, none was grade 4, and only one (5.3 %) was serious (pneumonia). AML volume was reduced ≥30 % in 11 (57.9 %) patients and ≥50 % in 9 (47.4 %); none progressed. Right and left kidney sizes decreased in 16 and 14 patients, respectively. Conclusions: These findings support the benefit of everolimus for renal AML due to a manageable safety profile accompanied by reduced AML and kidney volumes. Trial registration: EudraCT number 2012-005397-63; date of registration 22 Nov 2012.This work was funded by Novartis Farmacéutica S.A., which was involved in study design, data analysis and interpretation, and writing of the manuscrip

    Identification of Predictive Biomarkers of Response to HSP90 Inhibitors in Lung Adenocarcinoma

    Get PDF
    Heat shock protein 90 (HSP90) plays an essential role in lung adenocarcinoma, acting as a key chaperone involved in the correct functioning of numerous highly relevant protein drivers of this disease. To this end, HSP90 inhibitors have emerged as promising therapeutic strategies, even though responses to them have been limited to date. Given the need to maximize treatment efficacy, the objective of this study was to use isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic techniques to identify proteins in human lung adenocarcinoma cell lines whose basal abundances were correlated with response to HSP90 inhibitors (geldanamycin and radicicol derivatives). From the protein profiles identified according to response, the relationship between lactate dehydrogenase B (LDHB) and DNA topoisomerase 1 (TOP1) with respect to sensitivity and resistance, respectively, to geldanamycin derivatives is noteworthy. Likewise, rhotekin (RTKN) and decaprenyl diphosphate synthase subunit 2 (PDSS2) were correlated with sensitivity and resistance to radicicol derivatives. We also identified a relationship between resistance to HSP90 inhibition and the p53 pathway by glucose deprivation. In contrast, arginine biosynthesis was correlated with sensitivity to HSP90 inhibitors. Further study of these outcomes could enable the development of strategies to improve the clinical efficacy of HSP90 inhibition in patients with lung adenocarcinoma

    Inflammatory cytokines and organ dysfunction associate with the aberrant DNA methylome of monocytes in sepsis

    Get PDF
    Background: Sepsis, a life-threatening organ dysfunction caused by a dysregulated systemic immune response to infection, associates with reduced responsiveness to subsequent infections. How such tolerance is acquired is not well understood but is known to involve epigenetic and transcriptional dysregulation. Methods: Bead arrays were used to compare global DNA methylation changes in patients with sepsis, noninfectious systemic inflammatory response syndrome, and healthy controls. Bioinformatic analyses were performed to dissect functional reprogramming and signaling pathways related to the acquisition of these specific DNA methylation alterations. Finally, in vitro experiments using human monocytes were performed to test the induction of similar DNA methylation reprogramming. Results: Here, we focused on DNA methylation changes associated with sepsis, given their potential role in stabilizing altered phenotypes. Tolerized monocytes from patients with sepsis display changes in their DNA methylomes with respect to those from healthy controls, affecting critical monocyte-related genes. DNA methylation profiles correlate with IL-10 and IL-6 levels, significantly increased in monocytes in sepsis, as well as with the Sequential Organ Failure Assessment score; the observed changes associate with TFs and pathways downstream to toll-like receptors and inflammatory cytokines. In fact, in vitro stimulation of toll-like receptors in monocytes results in similar gains and losses of methylation together with the acquisition of tolerance. Conclusion: We have identified a DNA methylation signature associated with sepsis that is downstream to the response of monocytes to inflammatory signals associated with the acquisition of a tolerized phenotype and organic dysfunction

    READ-COGvid: A Database From Reading and Media Habits During COVID-19 Confinement in Spain and Italy

    Get PDF
    In the present paper, we present the READ-COGvid database, composed of responses of 4,800 individuals from Spain and Italy. While we focus on leisure and reading habits at different moments (before the confinement, shortly after confinement, and after 1 month confined), we also collected many other indices (socio-demographic, psychological, and reading-related) that may be of interest to researchers interested in adults' reading and related areas (e.g., communication research, cognitive sciences, social studies, health sciences, cross-cultural studies).Psicologí

    Fish Oil Enriched Intravenous Lipid Emulsions Reduce Triglyceride Levels in Non-Critically Ill Patients with TPN and Type 2 Diabetes. A Post-Hoc Analysis of the INSUPAR Study

    Get PDF
    There are no studies that have specifically assessed the role of intravenous lipid emulsions (ILE) enriched with fish oil in people with diabetes receiving total parenteral nutrition (TPN). The objective of this study was to assess the metabolic control (glycemic and lipid) and in-hospital complications that occurred in non-critically ill inpatients with TPN and type 2 diabetes with regard to the use of fish oil emulsions compared with other ILEs. We performed a post-hoc analysis of the Insulin in Parenteral Nutrition (INSUPAR) trial that included patients who started with TPN for any cause and that would predictably continue with TPN for at least five days. The study included 161 patients who started with TPN for any cause. There were 80 patients (49.7%) on fish oil enriched ILEs and 81 patients (50.3%) on other ILEs. We found significant decreases in triglyceride levels in the fish oil group compared to the other patients. We did not find any differences in glucose metabolic control: mean capillary glucose, glycemic variability, and insulin dose, except in the number of mild hypoglycemic events that was significantly higher in the fish oil group. We did not observe any differences in other metabolic, liver or infectious complications, in-hospital length of stay or mortality

    Regular insulin added to total parenteral nutrition vs subcutaneous glargine in non-critically ill diabetic inpatients, a multicenter randomized clinical trial: INSUPAR trial

    Get PDF
    Background: There is no established insulin regimen in T2DM patients receiving parenteral nutrition. Aims: To compare the effectiveness (metabolic control) and safety of two insulin regimens in patients with diabetes receiving TPN. Design: Prospective, open-label, multicenter, clinical trial on adult inpatients with type 2 diabetes on a non-critical setting with indication for TPN. Patients were randomized on one of these two regimens: 100% of RI on TPN or 50% of Regular insulin added to TPN bag and 50% subcutaneous Gl. Data were analyzed according to intention-to-treat principle. Results: 81 patients were on RI and 80 on GI. No differences were observed in neither average total daily dose of insulin, programmed or correction, nor in capillary mean blood glucose during TPN infusion (165.3 +/- 35.4 in RI vs 172.5 +/- 43.6 mg/dL in GI; p = 0.25). Mean capillary glucose was significantly lower in the GI group within two days after TPN interruption (160.3 +/- 45.1 in RI vs 141.7 +/- 43.8 mg/dL in GI; p = 0.024). The percentage of capillary glucose above 180 mg/dL was similar in both groups. The rate of capillary glucose <= 70 mg/dL, the number of hypoglycemic episodes per 100 days of TPN, and the percentage of patients with non-severe hypoglycemia were significantly higher on GI group. No severe hypoglycemia was detected. No differences were observed in length of stay, infectious complications, or hospital mortality. Conclusion: Effectiveness of both regimens was similar. GI group achieved better metabolic control after TPN interruption but non-severe hypoglycemia rate was higher in the GI group. (C) 2019 The Author(s). Published by Elsevier Ltd

    Effects of intubation timing in patients with COVID-19 throughout the four waves of the pandemic : a matched analysis

    Get PDF
    The primary aim of our study was to investigate the association between intubation timing and hospital mortality in critically ill patients with COVID-19-associated respiratory failure. We also analysed both the impact of such timing throughout the first four pandemic waves and the influence of prior non-invasive respiratory support on outcomes. This is a secondary analysis of a multicentre, observational and prospective cohort study that included all consecutive patients undergoing invasive mechanical ventilation due to COVID-19 from across 58 Spanish intensive care units (ICU) participating in the CIBERESUCICOVID project. The study period was between 29 February 2020 and 31 August 2021. Early intubation was defined as that occurring within the first 24 h of intensive care unit (ICU) admission. Propensity score (PS) matching was used to achieve balance across baseline variables between the early intubation cohort and those patients who were intubated after the first 24 h of ICU admission. Differences in outcomes between early and delayed intubation were also assessed. We performed sensitivity analyses to consider a different timepoint (48 h from ICU admission) for early and delayed intubation. Of the 2725 patients who received invasive mechanical ventilation, a total of 614 matched patients were included in the analysis (307 for each group). In the unmatched population, there were no differences in mortality between the early and delayed groups. After PS matching, patients with delayed intubation presented higher hospital mortality (27.3% versus 37.1%, p =0.01), ICU mortality (25.7% versus 36.1%, p=0.007) and 90-day mortality (30.9% versus 40.2%, p=0.02) when compared to the early intubation group. Very similar findings were observed when we used a 48-hour timepoint for early or delayed intubation. The use of early intubation decreased after the first wave of the pandemic (72%, 49%, 46% and 45% in the first, second, third and fourth wave, respectively; first versus second, third and fourth waves p<0.001). In both the main and sensitivity analyses, hospital mortality was lower in patients receiving high-flow nasal cannula (n=294) who were intubated earlier. The subgroup of patients undergoing NIV (n=214) before intubation showed higher mortality when delayed intubation was set as that occurring after 48 h from ICU admission, but not when after 24 h. In patients with COVID-19 requiring invasive mechanical ventilation, delayed intubation was associated with a higher risk of hospital mortality. The use of early intubation significantly decreased throughout the course of the pandemic. Benefits of such an approach occurred more notably in patients who had received high-flow nasal cannul

    Stratification of radiosensitive brain metastases based on an actionable S100A9/RAGE resistance mechanism

    Get PDF
    © The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Whole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9-RAGE-NF-κB-JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary melanoma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity.info:eu-repo/semantics/publishedVersio
    corecore